304 research outputs found

    The 10 Meter South Pole Telescope

    Full text link
    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation.Comment: 47 pages, 14 figures, updated to match version to be published in PASP 123 903 (May, 2011

    Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the BB-mode polarization power spectrum (the BBBB spectrum) from 100 deg2\mathrm{deg}^2 of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the BBBB spectrum in five bins in multipole space, spanning the range 3002300300 \le \ell \le 2300, and for three spectral combinations: 95 GHz ×\times 95 GHz, 95 GHz ×\times 150 GHz, and 150 GHz ×\times 150 GHz. We subtract small (<0.5σ< 0.5 \sigma in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the BBBB spectrum arising from the gravitational lensing of EE-mode polarization. If we assume no other source of BBBB power besides lensed BB modes, we determine a preference for lensed BB modes of 4.9σ4.9 \sigma. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is 4.3σ4.3 \sigma. Fitting for a single parameter, AlensA_\mathrm{lens}, that multiplies the predicted lensed BB-mode spectrum, and marginalizing over tensor power and foregrounds, we find Alens=1.08±0.26A_\mathrm{lens} = 1.08 \pm 0.26, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the BB-mode power spectrum on these angular scales.Comment: 21 pages, 4 figure

    Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey

    Full text link
    We present an internal consistency test of South Pole Telescope (SPT) measurements of the cosmic microwave background (CMB) temperature anisotropy using three-band data from the SPT-SZ survey. These measurements are made from observations of ~2500 deg^2 of sky in three frequency bands centered at 95, 150, and 220 GHz. We combine the information from these three bands into six semi-independent estimates of the CMB power spectrum (three single-frequency power spectra and three cross-frequency spectra) over the multipole range 650 < l < 3000. We subtract an estimate of foreground power from each power spectrum and evaluate the consistency among the resulting CMB-only spectra. We determine that the six foreground-cleaned power spectra are consistent with the null hypothesis, in which the six cleaned spectra contain only CMB power and noise. A fit of the data to this model results in a chi-squared value of 236.3 for 235 degrees of freedom, and the probability to exceed this chi-squared value is 46%.Comment: 21 pages, 4 figures, current version matches version published in JCA

    Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

    Get PDF
    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7 sigma significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR

    ALMA Observations of SPT-Discovered, Strongly Lensed, Dusty, Star-Forming Galaxies

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.Comment: Accepted for publication in the Astrophysics Journa

    The Growth of Cool Cores and Evolution of Cooling Properties in a Sample of 83 Galaxy Clusters at 0.3 < z < 1.2 Selected from the SPT-SZ Survey

    Full text link
    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare to local cluster samples. We find no significant evolution from z~0 to z~1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner ~100 kpc has not changed dramatically since z ~ 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at ~10 keV cm^2. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (rho_0/rho_crit) increasing by an order of magnitude from z ~ 1 to z ~ 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ~150 Msun/yr cooling flow that is unable to cool below entropies of 10 keV cm^2 and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z ~ 1, which represents the first constraints on the onset of cooling in galaxy cluster cores. We investigate several potential biases which could conspire to mimic this cool core evolution and are unable to find a bias that has a similar redshift dependence and a substantial amplitude.Comment: 17 pages with 15 figures, plus appendix. Published in Ap

    CMB Polarization B-mode Delensing with SPTpol and Herschel

    Full text link
    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2^2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel\textit{Herschel} 500μm500\,\mu m map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300<<2300300 < \ell < 2300; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at 6.9σ6.9 \sigma. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome

    A CMB lensing mass map and its correlation with the cosmic infrared background

    Full text link
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~ 4 sigma level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees at wavelengths of 500, 350, and 250 microns. We show that these submillimeter-wavelength (submm) maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ

    The Redshift Evolution of the Mean Temperature, Pressure, and Entropy Profiles in 80 SPT-Selected Galaxy Clusters

    Full text link
    (Abridged) We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg^2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing an X-ray fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0<r<1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z=0 to z=1.2. We find that high-z (0.6<z<1.2) clusters are slightly (~40%) cooler both in the inner (rR500) regions than their low-z (0.3<z<0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at rR500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3x) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z~1. This work demonstrates a powerful method for inferring spatially-resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.Comment: 17 pages, 13 figures, submitted to ApJ. Updated following referee repor
    corecore