3,458 research outputs found
Comparative in-vitro activity of new quinolones against clinical isolates and resistant mutants
The in-vitro activity of five new fluoroquinolones, WIN 57273, sparfloxacin, flerox-acin, temafloxacin and tiprofloxacin was determined against 543 recent clinical isolates and eight quinolone resistant strains derived by mutation and their five parent strains. WIN 57273 was the most active compound against Gram-positive bacteria, sparfloxacin had a broad spectrum which was similar to that of cipro-floxacin. Ciprofloxacin showed the greatest activity against Gram-negative bacteria. Temafloxacin showing some activity against Gram-positive organisms and Acinetobacter spp. Fleroxacin was the least active compound studied. Compared to wild type parent strains, the mutated strains produced the following results. In Enterobacter cloacae OmpF deficiency increased the MICs of all quinolones by 8-32-fold. In Pseudomonas aeruginosa OmpF deficiency had a limited effect, Omp D2 deficiency combined with an increased lipopolysaccharide content produced greater resistance, i.e. 4-16-fold; mutations in gyrase were associated with variously increased MICs, depending on the strain and compound teste
Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors
Band bending is a central concept in solid-state physics that arises from
local variations in charge distribution especially near semiconductor
interfaces and surfaces. Its precision measurement is vital in a variety of
contexts from the optimisation of field effect transistors to the engineering
of qubit devices with enhanced stability and coherence. Existing methods are
surface sensitive and are unable to probe band bending at depth from surface or
bulk charges related to crystal defects. Here we propose an in-situ method for
probing band bending in a semiconductor device by imaging an array of
atomic-sized quantum sensing defects to report on the local electric field. We
implement the concept using the nitrogen-vacancy centre in diamond, and map the
electric field at different depths under various surface terminations. We then
fabricate a two-terminal device based on the conductive two-dimensional hole
gas formed at a hydrogen-terminated diamond surface, and observe an unexpected
spatial modulation of the electric field attributed to a complex interplay
between charge injection and photo-ionisation effects. Our method opens the way
to three-dimensional mapping of band bending in diamond and other
semiconductors hosting suitable quantum sensors, combined with simultaneous
imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics.
The final authenticated version is available online at
https://dx.doi.org/10.1038/s41928-018-0130-
From START to FINISH : the influence of osmotic stress on the cell cycle
Peer reviewedPublisher PD
Baryogenesis through Collapsing String Loops in Gauged Baryon and Lepton Models
A scenario for the generation of the baryon asymmetry in the early Universe
is proposed in which cosmic string loops, predicted by theories where the
baryon and/or lepton numbers are gauged symmetries, collapse during the
friction dominated period of string evolution. This provides a mechanism for
the departure from thermal equilibrium necessary to have a nonvanishing baryon
asymmetry. Examples of models are given where this idea can be implemented. In
particular, the model with the gauge symmetry has the interesting
feature where sphaleron processes do not violate the baryon and lepton numbers
so that no wash out of any initial baryon asymmetry occurs at the electroweak
scale.Comment: 21 pages, LaTeX, PURD-TH-93-09, SISSA 87/93/
Hemispherical power asymmetry: parameter estimation from CMB WMAP5 data
We reexamine the evidence of the hemispherical power asymmetry, detected in
the CMB WMAP data using a new method. At first, we analyze the hemispherical
variance ratios and compare these with simulated distributions. Secondly,
working within a previously-proposed CMB bipolar modulation model, we constrain
model parameters: the amplitude and the orientation of the modulation field as
a function of various multipole bins. Finally, we select three ranges of
multipoles leading to the most anomalous signals, and we process corresponding
100 Gaussian, random field (GRF) simulations, treated as observational data, to
further test the statistical significance and robustness of the hemispherical
power asymmetry. For our analysis we use the Internally-Linearly-Coadded (ILC)
full sky map, and KQ75 cut-sky V channel, foregrounds reduced map of the WMAP
five year data (V5). We constrain the modulation parameters using a generic
maximum a posteriori method.
In particular, we find differences in hemispherical power distribution, which
when described in terms of a model with bipolar modulation field, exclude the
field amplitude value of the isotropic model A=0 at confidence level of ~99.5%
(~99.4%) in the multipole range l=[7,19] (l=[7,79]) in the V5 data, and at the
confidence level ~99.9% in the multipole range l=[7,39] in the ILC5 data, with
the best fit (modal PDF) values in these particular multipole ranges of A=0.21
(A=0.21) and A=0.15 respectively. However, we also point out that similar or
larger significances (in terms of rejecting the isotropic model), and large
best-fit modulation amplitudes are obtained in GRF simulations as well, which
reduces the overall significance of the CMB power asymmetry down to only about
94% (95%) in the V5 data, in the range l=[7,19] (l=[7,79]).Comment: 24 pages, 10 figures; few typos corrected; published in JCA
Formulation and performance of variational integrators for rotating bodies
Variational integrators are obtained for two mechanical systems whose configuration spaces are, respectively, the rotation group and the unit sphere. In the first case, an integration algorithm is presented for Euler’s equations of the free rigid body, following the ideas of Marsden et al. (Nonlinearity 12:1647–1662, 1999). In the second example, a variational time integrator is formulated for the rigid dumbbell. Both methods are formulated directly on their nonlinear configuration spaces, without using Lagrange multipliers. They are one-step, second order methods which show exact conservation of a discrete angular momentum which is identified in each case. Numerical examples illustrate their properties and compare them with existing integrators of the literature
Electric Charge Quantization
Experimentally it has been known for a long time that the electric charges of
the observed particles appear to be quantized. An approach to understanding
electric charge quantization that can be used for gauge theories with explicit
factors -- such as the standard model and its variants -- is
pedagogically reviewed and discussed in this article. This approach uses the
allowed invariances of the Lagrangian and their associated anomaly cancellation
equations. We demonstrate that charge may be de-quantized in the
three-generation standard model with massless neutrinos, because differences in
family-lepton--numbers are anomaly-free. We also review the relevant
experimental limits. Our approach to charge quantization suggests that the
minimal standard model should be extended so that family-lepton--number
differences are explicitly broken. We briefly discuss some candidate extensions
(e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently
regained interest as a good fit to the observed cosmic microwave background
temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density
parameter Omega as a derived rather than fundamental parameter. We assume that
the processes that select the 3-manifold also select a global mass-energy and a
Hubble parameter. The inferred range in Omega consists of a single real value
for any 3-manifold. Thus, the obvious measure over F is the discrete measure.
Hence, if the global mass-energy and Hubble parameter are a function of
3-manifold choice among compact FLRW models, then probability spaces
parametrised by Omega do not, in general, give a zero probability of a flat
model. Alternatively, parametrisation by the injectivity radius r_inj ("size")
suggests the Lebesgue measure. In this case, the probability space over the
injectivity radius implies that flat models occur almost surely (a.s.), in the
sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3:
generalisation: m, H functions of
Effect of pre-existing baryon inhomogeneities on the dynamics of quark-hadron transition
Baryon number inhomogeneities may be generated during the epoch when the
baryon asymmetry of the universe is produced, e.g. at the electroweak phase
transition. The regions with excess baryon number will have a lower temperature
than the background temperature of the universe. Also the value of the quark
hadron transition temperature will be different in these regions as
compared to the background region. Since a first-order quark hadron transition
is very susceptible to small changes in temperature, we investigate the effect
of the presence of such baryonic lumps on the dynamics of quark-hadron
transition. We find that the phase transition is delayed in these lumps for
significant overdensities. Consequently, we argue that baryon concentration in
these regions grows by the end of the transition. We briefly discuss some
models which may give rise to such high overdensities at the onset of the
quark-hadron transition.Comment: 16 pages, no figures, minor changes, version to appear in Phys. Rev.
- …
