1,920 research outputs found
Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,
The isospin dependence of the spin-orbit potential is investigated for an
effective Skyrme-like energy functional suitable for density dependent
Hartree-Fock calculations. The magnitude of the isospin dependence is obtained
from a fit to experimental data on finite spherical nuclei. It is found to be
close to that of relativistic Hartree models. Consequently, the anomalous kink
in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request,
Preprint MPA-833, Physical Review Letters (in press)
Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment
The KATRIN experiment aims at the direct model-independent determination of
the average electron neutrino mass via the measurement of the endpoint region
of the tritium beta decay spectrum. The electron spectrometer of the MAC-E
filter type is used, requiring very high stability of the electric filtering
potential. This work proves the feasibility of implanted 83Rb/83mKr calibration
electron sources which will be utilised in the additional monitor spectrometer
sharing the high voltage with the main spectrometer of KATRIN. The source
employs conversion electrons of 83mKr which is continuously generated by 83Rb.
The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7
eV) is shown to fulfill the KATRIN requirement of the relative energy stability
of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous
monitoring of KATRIN's energy scale stability with sub-ppm precision. They may
also be used in other applications where the precise conversion lines can be
separated from the low energy spectrum caused by the electron inelastic
scattering in the substrate.Comment: 30 pages, 10 figures, 1 table, minor revision of the preprint,
accepted by JINST on 5.2.201
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
ENIGMA: Efficient Learning-based Inference Guiding Machine
ENIGMA is a learning-based method for guiding given clause selection in
saturation-based theorem provers. Clauses from many proof searches are
classified as positive and negative based on their participation in the proofs.
An efficient classification model is trained on this data, using fast
feature-based characterization of the clauses . The learned model is then
tightly linked with the core prover and used as a basis of a new parameterized
evaluation heuristic that provides fast ranking of all generated clauses. The
approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing
a large increase of E's performance.Comment: Submitted to LPAR 201
Neutron density distributions for atomic parity nonconservation experiments
The neutron distributions of Cs, Ba, Yb and Pb isotopes are described in the
framework of relativistic mean-field theory. The self-consistent ground state
proton and neutron density distributions are calculated with the relativistic
Hartree-Bogoliubov model. The binding energies, the proton and neutron radii,
and the quadrupole deformations are compared with available experimental data,
as well as with recent theoretical studies of the nuclear structure corrections
to the weak charge in atomic parity nonconservation experiments.Comment: 16 pages, RevTex, 11 eps figs, submitted to Phys. Rev.
Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination
Changes in the mean-square nuclear charge radii along the lithium isotopic
chain were determined using a combination of precise isotope shift measurements
and theoretical atomic structure calculations. Nuclear charge radii of light
elements are of high interest due to the appearance of the nuclear halo
phenomenon in this region of the nuclear chart. During the past years we have
developed a new laser spectroscopic approach to determine the charge radii of
lithium isotopes which combines high sensitivity, speed, and accuracy to
measure the extremely small field shift of an 8 ms lifetime isotope with
production rates on the order of only 10,000 atoms/s. The method was applied to
all bound isotopes of lithium including the two-neutron halo isotope Li-11 at
the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF,
Vancouver, Canada. We describe the laser spectroscopic method in detail,
present updated and improved values from theory and experiment, and discuss the
results.Comment: 34 pages, 24 figures, 14 table
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}
Isotope shifts in dielectronic recombination spectra were studied for Li-like
^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance
positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV
(stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j
transitions were deduced. An evaluation of these values within a full QED
treatment yields a change in the mean-square charge radius of ^{142,150}\delta
= -1.36(1)(3) fm^2. The approach is conceptually new and combines the
advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review
Letter
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
- …
