4,009 research outputs found
Experimental study of digital image processing techniques for LANDSAT data
The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections
The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring
The PULSE@Parkes project has been designed to monitor the rotation of radio
pulsars over time spans of days to years. The observations are obtained using
the Parkes 64-m and 12-m radio telescopes by Australian and international high
school students. These students learn the basis of radio astronomy and
undertake small projects with their observations. The data are fully calibrated
and obtained with the state-of-the-art pulsar hardware available at Parkes. The
final data sets are archived and are currently being used to carry out studies
of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long
time scales and 4) the extreme nulling phenomenon. The data are also included
in other projects such as gamma-ray observatory support and for the Parkes
Pulsar Timing Array project. In this paper we describe the current status of
the project and present the first scientific results from the Parkes 12-m radio
telescope. We emphasise that this project offers a straightforward means to
enthuse high school students and the general public about radio astronomy while
obtaining scientifically valuable data sets.Comment: accepted for publication by PAS
Diminished HIV Infection of Target CD4+ T Cells in a Toll-Like Receptor 4 Stimulated in vitro Model
A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw
We report on our findings based on the analysis of observations of the Type
II-L supernova LSQ13cuw within the framework of currently accepted physical
predictions of core-collapse supernova explosions. LSQ13cuw was discovered
within a day of explosion, hitherto unprecedented for Type II-L supernovae.
This motivated a comparative study of Type II-P and II-L supernovae with
relatively well-constrained explosion epochs and rise times to maximum
(optical) light. From our sample of twenty such events, we find evidence of a
positive correlation between the duration of the rise and the peak brightness.
On average, SNe II-L tend to have brighter peak magnitudes and longer rise
times than SNe II-P. However, this difference is clearest only at the extreme
ends of the rise time versus peak brightness relation. Using two different
analytical models, we performed a parameter study to investigate the physical
parameters that control the rise time behaviour. In general, the models
qualitatively reproduce aspects of the observed trends. We find that the
brightness of the optical peak increases for larger progenitor radii and
explosion energies, and decreases for larger masses. The dependence of the rise
time on mass and explosion energy is smaller than the dependence on the
progenitor radius. We find no evidence that the progenitors of SNe II-L have
significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&
Coherently Dedispersed Polarimetry of Millisecond Pulsars
We present a large sample of high-precision, coherently-dedispersed
polarization profiles of millisecond pulsars (MSPs) at frequencies between 410
and 1414 MHz. These data include the first polarimetric observations of several
of the pulsars, and the first low-frequency polarization profiles for others.
Our observations support previous suggestions that the pulse shapes and
polarimetry of MSPs are more complex than those of their slower relatives. An
immediate conclusion is that polarimetry-based classification schemes proposed
for young pulsars are of only limited use when applied to millisecond pulsars.Comment: 28 pages, 10 figures. Text matches version that appeared in ApJS.
Full paper with high-resolution figures available at
ftp://ftp.jb.man.ac.uk/pub/psr/papers/msppolpton.ps.g
The Expanded Very Large Array
In almost 30 years of operation, the Very Large Array (VLA) has proved to be
a remarkably flexible and productive radio telescope. However, the basic
capabilities of the VLA have changed little since it was designed. A major
expansion utilizing modern technology is currently underway to improve the
capabilities of the VLA by at least an order of magnitude in both sensitivity
and in frequency coverage. The primary elements of the Expanded Very Large
Array (EVLA) project include new or upgraded receivers for continuous frequency
coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and
wide bandwidth data transmission systems to carry signals with 16 GHz total
bandwidth from each antenna, and a new digital correlator with the capability
to process this bandwidth with an unprecedented number of frequency channels
for an imaging array. Also included are a new monitor and control system and
new software that will provide telescope ease of use. Scheduled for completion
in 2012, the EVLA will provide the world research community with a flexible,
powerful, general-purpose telescope to address current and future astronomical
issues.Comment: Added journal reference: published in Proceedings of the IEEE,
Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8,
1448-1462 Six figures, one tabl
Self-aligned fabrication process for silicon quantum computer devices
We describe a fabrication process for devices with few quantum bits (qubits),
which are suitable for proof-of-principle demonstrations of silicon-based
quantum computation. The devices follow the Kane proposal to use the nuclear
spins of 31P donors in 28Si as qubits, controlled by metal surface gates and
measured using single electron transistors (SETs). The accurate registration of
31P donors to control gates and read-out SETs is achieved through the use of a
self-aligned process which incorporates electron beam patterning, ion
implantation and triple-angle shadow-mask metal evaporation
Modal Platonism and the problem of negativity.
The Platonic account of modality says, roughly, that truths about alien possibilities are grounded in uninstantiated universals. Recently, Ingram has raised a problem for this kind of view, which is that it apparently requires negative facts to play a truthmaking role. Ingram offers an alternative Platonic account which makes use of modal instantiation relations. In this paper, I highlight some of the costs of Ingram’s new account and argue that a more appealing version of Platonism—and modal theory in general—is one that is supplemented with an ontology of totality facts
Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the
PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface
Profile instabilities of the millisecond pulsar PSR J1022+1001
We present evidence that the integrated profiles of some millisecond pulsars
exhibit severe changes that are inconsistent with the moding phenomenon as
known from slowly rotating pulsars. We study these profile instabilities in
particular for PSR J1022+1001 and show that they occur smoothly, exhibiting
longer time constants than those associated with moding. In addition, the
profile changes of this pulsar seem to be associated with a relatively
narrow-band variation of the pulse shape. Only parts of the integrated profile
participate in this process which suggests that the origin of this phenomenon
is intrinsic to the pulsar magnetosphere and unrelated to the interstellar
medium. A polarization study rules out profile changes due to geometrical
effects produced by any sort of precession. However, changes are observed in
the circularly polarized radiation component. In total we identify four
recycled pulsars which also exhibit instabilities in the total power or
polarization profiles due to an unknown phenomenon (PSRs J1022+1001,
J1730-2304, B1821-24, J2145-0750).
The consequences for high precision pulsar timing are discussed in view of
the standard assumption that the integrated profiles of millisecond pulsars are
stable. As a result we present a new method to determine pulse times-of-arrival
that involves an adjustment of relative component amplitudes of the template
profile. Applying this method to PSR J1022+1001, we obtain an improved timing
solution with a proper motion measurement of -17 \pm 2 mas/yr in ecliptic
longitude. Assuming a distance to the pulsar as inferred from the dispersion
measure this corresponds to an one-dimensional space velocity of 50 km/s.Comment: 29 pages, 12 figures, accepted for publication in Ap
- …
