4,009 research outputs found

    Experimental study of digital image processing techniques for LANDSAT data

    Get PDF
    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections

    The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring

    Full text link
    The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.Comment: accepted for publication by PAS

    A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw

    Get PDF
    We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&

    Coherently Dedispersed Polarimetry of Millisecond Pulsars

    Full text link
    We present a large sample of high-precision, coherently-dedispersed polarization profiles of millisecond pulsars (MSPs) at frequencies between 410 and 1414 MHz. These data include the first polarimetric observations of several of the pulsars, and the first low-frequency polarization profiles for others. Our observations support previous suggestions that the pulse shapes and polarimetry of MSPs are more complex than those of their slower relatives. An immediate conclusion is that polarimetry-based classification schemes proposed for young pulsars are of only limited use when applied to millisecond pulsars.Comment: 28 pages, 10 figures. Text matches version that appeared in ApJS. Full paper with high-resolution figures available at ftp://ftp.jb.man.ac.uk/pub/psr/papers/msppolpton.ps.g

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    Self-aligned fabrication process for silicon quantum computer devices

    Full text link
    We describe a fabrication process for devices with few quantum bits (qubits), which are suitable for proof-of-principle demonstrations of silicon-based quantum computation. The devices follow the Kane proposal to use the nuclear spins of 31P donors in 28Si as qubits, controlled by metal surface gates and measured using single electron transistors (SETs). The accurate registration of 31P donors to control gates and read-out SETs is achieved through the use of a self-aligned process which incorporates electron beam patterning, ion implantation and triple-angle shadow-mask metal evaporation

    Modal Platonism and the problem of negativity.

    Get PDF
    The Platonic account of modality says, roughly, that truths about alien possibilities are grounded in uninstantiated universals. Recently, Ingram has raised a problem for this kind of view, which is that it apparently requires negative facts to play a truthmaking role. Ingram offers an alternative Platonic account which makes use of modal instantiation relations. In this paper, I highlight some of the costs of Ingram’s new account and argue that a more appealing version of Platonism—and modal theory in general—is one that is supplemented with an ontology of totality facts

    Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    Get PDF
    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface

    Profile instabilities of the millisecond pulsar PSR J1022+1001

    Get PDF
    We present evidence that the integrated profiles of some millisecond pulsars exhibit severe changes that are inconsistent with the moding phenomenon as known from slowly rotating pulsars. We study these profile instabilities in particular for PSR J1022+1001 and show that they occur smoothly, exhibiting longer time constants than those associated with moding. In addition, the profile changes of this pulsar seem to be associated with a relatively narrow-band variation of the pulse shape. Only parts of the integrated profile participate in this process which suggests that the origin of this phenomenon is intrinsic to the pulsar magnetosphere and unrelated to the interstellar medium. A polarization study rules out profile changes due to geometrical effects produced by any sort of precession. However, changes are observed in the circularly polarized radiation component. In total we identify four recycled pulsars which also exhibit instabilities in the total power or polarization profiles due to an unknown phenomenon (PSRs J1022+1001, J1730-2304, B1821-24, J2145-0750). The consequences for high precision pulsar timing are discussed in view of the standard assumption that the integrated profiles of millisecond pulsars are stable. As a result we present a new method to determine pulse times-of-arrival that involves an adjustment of relative component amplitudes of the template profile. Applying this method to PSR J1022+1001, we obtain an improved timing solution with a proper motion measurement of -17 \pm 2 mas/yr in ecliptic longitude. Assuming a distance to the pulsar as inferred from the dispersion measure this corresponds to an one-dimensional space velocity of 50 km/s.Comment: 29 pages, 12 figures, accepted for publication in Ap
    corecore