570 research outputs found
Evaluation of 2.1µm DFB lasers for space applications
This paper presents the results obtained in the frame of an ESA-funded project called “Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application” with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1µm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current
How large is "large " for Nuclear matter?
We argue that a so far neglected dimensionless scale, the number of neighbors
in a closely packed system, is relevant for the convergence of the large
expansion at high chemical potential. It is only when the number of colors is
large w.r.t. this new scale (\sim \order{10}) that a convergent large
limit is reached. This provides an explanation as to why the large
expansion, qualitatively successful in in vacuum QCD, fails to describe high
baryo-chemical potential systems, such as nuclear matter. It also means that
phenomenological claims about high density matter based on large
extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on
Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247
Phase diagrams in nonlocal PNJL models constrained by Lattice QCD results
Based on lattice QCD-adjusted SU(2) nonlocal Polyakov--Nambu--Jona-Lasinio
(PNJL) models, we investigate how the location of the critical endpoint in the
QCD phase diagram depends on the strenght of the vector meson coupling, as well
as the Polyakov-loop (PL) potential and the form factors of the covariant
model. The latter are constrained by lattice QCD data for the quark propagator.
The strength of the vector coupling is adjusted such as to reproduce the slope
of the pseudocritical temperature for the chiral phase transition at low
chemical potential extracted recently from lattice QCD simulations. Our study
supports the existence of a critical endpoint in the QCD phase diagram albeit
the constraint for the vector coupling shifts its location to lower
temperatures and higher baryochemical potentials than in the case without it.Comment: 23 pages, 10 figures. Version accepted in Phys. Part. Nucl. Lett. (to
appear), references adde
Core collapse supernovae in the QCD phase diagram
We compare two classes of hybrid equations of state with a hadron-to-quark
matter phase transition in their application to core collapse supernova
simulations. The first one uses the quark bag model and describes the
transition to three-flavor quark matter at low critical densities. The second
one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with
parameters describing a phase transition to two-flavor quark matter at higher
critical densities. These models possess a distinctly different temperature
dependence of their transition densities which turns out to be crucial for the
possible appearance of quark matter in supernova cores. During the early post
bounce accretion phase quark matter is found only if the phase transition takes
place at sufficiently low densities as in the study based on the bag model. The
increase critical density with increasing temperature, as obtained for our PNJL
parametrization, prevents the formation of quark matter. The further evolution
of the core collapse supernova as obtained applying the quark bag model leads
to a structural reconfiguration of the central proto-neutron star where, in
addition to a massive pure quark matter core, a strong hydrodynamic shock wave
forms and a second neutrino burst is released during the shock propagation
across the neutrinospheres. We discuss the severe constraints in the freedom of
choice of quark matter models and their parametrization due to the recently
observed 2 solar mass pulsar and their implications for further studies of core
collapse supernovae in the QCD phase diagram.Comment: 19 pages, 4 figures, CPOD2010 conference proceedin
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
Hadron Production in Ultra-relativistic Nuclear Collisions: Quarkyonic Matter and a Triple Point in the Phase Diagram of QCD
We argue that features of hadron production in relativistic nuclear
collisions, mainly at CERN-SPS energies, may be explained by the existence of
three forms of matter: Hadronic Matter, Quarkyonic Matter, and a Quark-Gluon
Plasma. We suggest that these meet at a triple point in the QCD phase diagram.
Some of the features explained, both qualitatively and semi-quantitatively,
include the curve for the decoupling of chemical equilibrium, along with the
non-monotonic behavior of strange particle multiplicity ratios at center of
mass energies near 10 GeV. If the transition(s) between the three phases are
merely crossover(s), the triple point is only approximate.Comment: 28 pages, 9 figures; submitted to Nucl. Phys. A; v2 to eliminate
obsolete figs. inadvertently attached at the end of the paper; v3: final
version accepted for publicatio
Color perception deficits in co-existing attention-deficit/hyperactivity disorder and chronic tic disorders
Preliminary findings suggest that color perception, particularly of blue-yellow stimuli, is impaired in attention-deficit/hyperactivity disorder (ADHD) as well as in chronic tic disorders (CTD). However, these findings have been not replicated and it is unclear what these deficits mean for the comorbidity of ADHD + CTD. Four groups (ADHD, CTD, ADHD + CTD, controls) of children with similar age, IQ and gender distribution were investigated with the Farnsworth-Munsell 100 Hue Test (FMT) and the Stroop-Color-Word Task using a factorial design. Color perception deficits, as indexed by the FMT, were found for both main factors (ADHD and CTD), but there were no interaction effects. A preponderance of deficits on the blue-yellow compared to the red-green axis was detected for ADHD. In the Stroop task only the 'pure' ADHD group showed impairments in interference control and other parameters of Stroop performance. No significant correlations between any FMT parameter and color naming in the Stroop task were found. Basic color perception deficits in both ADHD and CTD could be found. Beyond that, it could be shown that these deficits are additive in the case of comorbidity (ADHD + CTD). Performance deficits on the Stroop task were present only in the 'pure' ADHD group. Hence, the latter may be compensated in the comorbid group by good prefrontal capabilities of CTD. The influence of color perception deficits on Stroop task performance might be negligible. © 2007 Springer-Verlag
Hybrid Stars in a Strong Magnetic Field
We study the effects of high magnetic fields on the particle population and
equation of state of hybrid stars using an extended hadronic and quark SU(3)
non-linear realization of the sigma model. In this model the degrees of freedom
change naturally from hadrons to quarks as the density and/or temperature
increases. The effects of high magnetic fields and anomalous magnetic moment
are visible in the macroscopic properties of the star, such as mass, adiabatic
index, moment of inertia, and cooling curves. Moreover, at the same time that
the magnetic fields become high enough to modify those properties, they make
the star anisotropic.Comment: Revised version with updated reference
Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender
Summary.
Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has
received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association
remain unclear. Therefore, we investigated the prevalence of motor coordination problems in a large sample of children with
ADHD, and the relationship between motor coordination problems and inattentive and hyperactive/impulsive symptoms. Furthermore,
we assessed whether the association between ADHD and motor coordination problems was comparable across ages and was similar
for both genders.
Method. We investigated 486 children with ADHD and 269 normal controls. Motor coordination problems were rated by parents (Developmental
Coordination Disorder Questionnaire) and teachers (Groningen Motor Observation Scale).
Results. Parents and teachers reported motor coordination problems in about one third of children with ADHD. Problems of fine and
gross motor skills, coordination skills and motor control were all related to inattentive rather than hyperactive/impulsive
symptoms. Relative to controls, motor coordination problems in ADHD were still present in teenagers according to parents;
the prevalence diminished somewhat according to teachers. Boys and girls with ADHD were comparably affected, but motor performance
in controls was better in girls than in boys.
Conclusions. Motor coordination problems were reported in one third of children with ADHD and affected both boys and girls. These problems
were also apparent in adolescents with ADHD. Clinicians treating children with ADHD should pay attention to co-occurring motor
coordination problems because of the high prevalence and the negative impact of motor coordination problems on daily life
Subliminal and supraliminal processing of reward-related stimuli in anorexia nervosa
Background. Previous studies have highlighted the role of the brain reward and cognitive control systems in the etiology of anorexia nervosa (AN). In an attempt to disentangle the relative contribution of these systems to the disorder, we used functional magnetic resonance imaging (fMRI) to investigate hemodynamic responses to reward-related stimuli presented both subliminally and supraliminally in acutely underweight AN patients and age-matched healthy controls (HC).
Methods. fMRI data were collected from a total of 35 AN patients and 35 HC, while they passively viewed subliminally and supraliminally presented streams of food, positive social, and neutral stimuli. Activation patterns of the group × stimulation condition × stimulus type interaction were interrogated to investigate potential group differences in processing different stimulus types under the two stimulation conditions. Moreover, changes in functional connectivity were investigated using generalized psychophysiological interaction analysis.
Results. AN patients showed a generally increased response to supraliminally presented stimuli in the inferior frontal junction (IFJ), but no alterations within the reward system. Increased activation during supraliminal stimulation with food stimuli was observed in the AN group in visual regions including superior occipital gyrus and the fusiform gyrus/parahippocampal gyrus. No group difference was found with respect to the subliminal stimulation condition and functional connectivity.
Conclusion. Increased IFJ activation in AN during supraliminal stimulation may indicate hyperactive cognitive control, which resonates with clinical presentation of excessive self-control in AN patients. Increased activation to food stimuli in visual regions may be interpreted in light of an attentional food bias in AN
- …
