19,661 research outputs found
Physical and subjective studies of aircraft interior noise and vibration
Measurements to define and quantify the interior noise and vibration stimuli of aircraft are reviewed as well as field and simulation studies to determine the subjective response to such stimuli, and theoretical and experimental studies to predict and control the interior environment. In addition, ride quality criteria/standards for noise, vibration, and combinations of these stimuli are discussed in relation to the helicopter cabin environment. Data on passenger response are presented to illustrate the effects of interior noise and vibration on speech intelligibility and comfort of crew and passengers. The interactive effects of noise with multifrequency and multiaxis vibration are illustrated by data from LaRC ride quality simulator. Constant comfort contours for various combinations of noise and vibration are presented and the incorporation of these results into a user-oriented model are discussed. With respect to aircraft interior noise and vibration control, ongoing studies to define the near-field noise, the transmission of noise through the structure, and the effectiveness of control treatments are described
Improved active vibration isolator
Active vibration isolator simultaneously isolates a flexible structure or payload from disturbances, attenuates the response of a flexible structure to transient disturbances, and maintains the equilibrium position of the payload within predetermined limits over a wide range of steady loads and accelerators
Active vibration isolator for flexible bodies Patent
Vibration control of flexible bodies in steady accelerating environmen
Preparation, analysis and release of simulated interplanetary grains into low Earth orbit
Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere observations were the only method of deducing the properties of extraterrestrial particles. In order to elucidate the detailed characteristics of observed dust, the observations must be compared with theoretical studies, some of which are discussed in this volume, or compared with terrestrial laboratory experiments. The formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles were discussed. Efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit were discussed, thus extending the conditions under which dust experiments may be performed
Ride quality meter
A ride quality meter is disclosed that automatically transforms vibration and noise measurements into a single number index of passenger discomfort. The noise measurements are converted into a noise discomfort value. The vibrations are converted into single axis discomfort values which are then converted into a combined axis discomfort value. The combined axis discomfort value is corrected for time duration and then summed with the noise discomfort value to obtain a total discomfort value
Spin accumulation in forward-biased MnAs/GaAs Schottky diodes
We describe a new means for electrically creating spin polarization in
semiconductors. In contrast to spin injection of electrons by tunneling through
a reverse-biased Schottky barrier, we observe spin accumulation at the
metal/semiconductor interface of forward-biased ferromagnetic Schottky diodes,
which is consistent with a theory of spin-dependent reflection off the
interface. Spatiotemporal Kerr microscopy is used to image the electron spin
and the resulting dynamic nuclear polarization that arises from the non
equilibrium carrier polarization.Comment: 13 pages, 4 figures, submitted for publicatio
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter
- …
