4,180 research outputs found
Practical applications of data mining in plant monitoring and diagnostics
Using available expert knowledge in conjunction with a structured process of data mining, characteristics observed in captured condition monitoring data, representing characteristics of plant operation may be understood, explained and quantified. Knowledge and understanding of satisfactory and unsatisfactory plant condition can be gained and made explicit from the analysis of data observations and subsequently used to form the basis of condition assessment and diagnostic rules/models implemented in decision support systems supporting plant maintenance. This paper proposes a data mining method for the analysis of condition monitoring data, and demonstrates this method in its discovery of useful knowledge from trip coil data captured from a population of in-service distribution circuit breakers and empirical UHF data captured from laboratory experiments simulating partial discharge defects typically found in HV transformers. This discovered knowledge then forms the basis of two separate decision support systems for the condition assessment/defect clasification of these respective plant items
Foot and Mouth Epidemic Reduces Cases of Human Cryptosporidiosis in Scotland.
In Scotland, rates of cryptosporidiosis infection in humans peak during the spring, a peak that is coincident with the peak in rates of infection in farm animals (during lambing and calving time). Here we show that, during the outbreak of foot and mouth disease (FMD) in 2001, there was a significant reduction in human cases of cryptosporidiosis infection in southern Scotland, where FMD was present, whereas, in the rest of Scotland, there was a reduction in cases that was not significant. We associate the reduction in human cases of cryptosporidiosis infection with the reduction in the number of young farm animals, together with restrictions on movement of both farm animals and humans, during the outbreak of FMD in 2001. We further show that, during 2002, there was recovery in the rate of cryptosporidiosis infection in humans throughout Scotland, particularly in the FMD-infected area, but that rates of infection remained lower, though not significantly, than pre-2001 levels
Limitation of energy deposition in classical N body dynamics
Energy transfers in collisions between classical clusters are studied with
Classical N Body Dynamics calculations for different entrance channels. It is
shown that the energy per particle transferred to thermalised classical
clusters does not exceed the energy of the least bound particle in the cluster
in its ``ground state''. This limitation is observed during the whole time of
the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl
The dispersive self-dual Einstein equations and the Toda lattice
The Boyer-Finley equation, or -Toda equation is both a reduction
of the self-dual Einstein equations and the dispersionlesslimit of the
-Toda lattice equation. This suggests that there should be a dispersive
version of the self-dual Einstein equation which both contains the Toda lattice
equation and whose dispersionless limit is the familiar self-dual Einstein
equation. Such a system is studied in this paper. The results are achieved by
using a deformation, based on an associative -product, of the algebra
used in the study of the undeformed, or dispersionless,
equations.Comment: 11 pages, LaTeX. To appear: J. Phys.
Normal-Superconducting Phase Transition Mimicked by Current Noise
As a superconductor goes from the normal state into the superconducting
state, the voltage vs. current characteristics at low currents change from
linear to non-linear. We show theoretically and experimentally that the
addition of current noise to non-linear voltage vs. current curves will create
ohmic behavior. Ohmic response at low currents for temperatures below the
critical temperature mimics the phase transition and leads to incorrect
values for and the critical exponents and . The ohmic response
occurs at low currents, when the applied current is smaller than the
width of the probability distribution , and will occur in both the
zero-field transition and the vortex-glass transition. Our results indicate
that the transition temperature and critical exponents extracted from the
conventional scaling analysis are inaccurate if current noise is not filtered
out. This is a possible explanation for the wide range of critical exponents
found in the literature.Comment: 4 pages, 2 figure
Molecular dynamics simulations of oxide memory resistors (memristors)
Reversible bipolar nano-switches that can be set and read electronically in a
solid-state two-terminal device are very promising for applications. We have
performed molecular-dynamics simulations that mimic systems with oxygen
vacancies interacting via realistic potentials and driven by an external bias
voltage. The competing short- and long-range interactions among charged mobile
vacancies lead to density fluctuations and short-range ordering, while
illustrating some aspects of observed experimental behavior, such as memristor
polarity inversion.Comment: 15 pages, 5 figure
The algebraic and Hamiltonian structure of the dispersionless Benney and Toda hierarchies
The algebraic and Hamiltonian structures of the multicomponent dispersionless
Benney and Toda hierarchies are studied. This is achieved by using a modified
set of variables for which there is a symmetry between the basic fields. This
symmetry enables formulae normally given implicitly in terms of residues, such
as conserved charges and fluxes, to be calculated explicitly. As a corollary of
these results the equivalence of the Benney and Toda hierarchies is
established. It is further shown that such quantities may be expressed in terms
of generalized hypergeometric functions, the simplest example involving
Legendre polynomials. These results are then extended to systems derived from a
rational Lax function and a logarithmic function. Various reductions are also
studied.Comment: 29 pages, LaTe
Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition
Researchers have studied the normal-superconducting phase transition in the
high- cuprates in a magnetic field (the vortex-glass or Bose-glass
transition) and in zero field. Often, transport measurements in "zero field"
are taken in the Earth's ambient field or in the remnant field of a magnet. We
show that fields as small as the Earth's field will alter the shape of the
current vs. voltage curves and will result in inaccurate values for the
critical temperature and the critical exponents and , and can
even destroy the phase transition. This indicates that without proper screening
of the magnetic field it is impossible to determine the true zero-field
critical parameters, making correct scaling and other data analysis impossible.
We also show, theoretically and experimentally, that the self-field generated
by the current flowing in the sample has no effect on the current vs. voltage
isotherms.Comment: 4 pages, 4 figure
Gate Coupling to Nanoscale Electronics
The realization of single-molecule electronic devices, in which a
nanometer-scale molecule is connected to macroscopic leads, requires the
reproducible production of highly ordered nanoscale gaps in which a molecule of
interest is electrostatically coupled to nearby gate electrodes. Understanding
how the molecule-gate coupling depends on key parameters is crucial for the
development of high-performance devices. Here we directly address this,
presenting two- and three-dimensional finite-element electrostatic simulations
of the electrode geometries formed using emerging fabrication techniques. We
quantify the gate coupling intrinsic to these devices, exploring the roles of
parameters believed to be relevant to such devices. These include the thickness
and nature of the dielectric used, and the gate screening due to different
device geometries. On the single-molecule (~1nm) scale, we find that device
geometry plays a greater role in the gate coupling than the dielectric constant
or the thickness of the insulator. Compared to the typical uniform nanogap
electrode geometry envisioned, we find that non-uniform tapered electrodes
yield a significant three orders of magnitude improvement in gate coupling. We
also find that in the tapered geometry the polarizability of a molecular
channel works to enhance the gate coupling
- …
