13,396 research outputs found
PCA of PCA: Principal Component Analysis of Partial Covering Absorption in NGC 1365
We analyse 400 ks of XMM-Newton data on the active galactic nucleus NGC 1365
using principal component analysis (PCA) to identify model independent spectral
components. We find two significant components and demonstrate that they are
qualitatively different from those found in MCG?6-30-15 using the same method.
As the variability in NGC 1365 is known to be due to changes in the parameters
of a partial covering neutral absorber, this shows that the same mechanism
cannot be the driver of variability in MCG-6-30-15. By examining intervals
where the spectrum shows relatively low absorption we separate the effects of
intrinsic source variability, including signatures of relativistic reflection,
from variations in the intervening absorption. We simulate the principal
components produced by different physical variations, and show that PCA
provides a clear distinction between absorption and reflection as the drivers
of variability in AGN spectra. The simulations are shown to reproduce the PCA
spectra of both NGC 1365 and MCG-6-30-15, and further demonstrate that the
dominant cause of spectral variability in these two sources requires a
qualitatively different mechanism.Comment: 8 pages, 10 figures. Accepted for publication in MNRA
Modelling the Extreme X-ray Spectrum of IRAS 13224-3809
The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability,
frequency depended time lags, and strong Fe K line and Fe L features in the
long 2011 XMM-Newton observation. In this work we study the spectral properties
of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the
nature of the source, focusing in particular on the spectral variability
exhibited. The RGS spectrum shows no obvious signatures of absorption by
partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra
with a model that includes relativistic reflection from the inner accretion
disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV)
blackbody, which may originate in the accretion disc, either as direct or
reprocessed thermal emission. We find that the reflection model explains the
time-averaged spectrum well, and we also undertake flux-resolved and
time-resolved spectral analyses, which provide evidence of gravitational
light-bending effects. Additionally, the temperature and flux of the blackbody
component are found to follow the relation expected for simple
thermal blackbody emission from a constant emitting area, indicating a physical
origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Constraining the geometry of AGN outflows with reflection spectroscopy
We collate active galactic nuclei (AGN) with reported detections of both
relativistic reflection and ultra-fast outflows. By comparing the inclination
of the inner disc from reflection with the line-of-sight velocity of the
outflow, we show that it is possible to meaningfully constrain the geometry of
the absorbing material. We find a clear relation between the velocity and
inclination, and demonstrate that it can potentially be explained either by
simple wind geometries or by absorption from the disc surface. Due to
systematic errors and a shortage of high- quality simultaneous measurements our
conclusions are tentative, but this study represents a proof-of-concept that
has great potential.Comment: 5 pages, 3 figures, accepted to MNRAS letter
Baseline design of the filters for the LAD detector on board LOFT
The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions
selected for the phase A study in the ESA's Cosmic Vision program. LOFT is
designed to perform high-time-resolution X-ray observations of black holes and
neutron stars. The main instrument on the LOFT payload is the Large Area
Detector (LAD), a collimated experiment with a nominal effective area of ~10 m
2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV.
These performances are achieved covering a large collecting area with more than
2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator
based on lead-glass micro-channel plates. In order to reduce the thermal load
onto the detectors, which are open to Sky, and to protect them from out of band
radiation, optical-thermal filter will be mounted in front of the SDDs.
Different options have been considered for the LAD filters for best compromise
between high quantum efficiency and high mechanical robustness. We present the
baseline design of the optical-thermal filters, show the nominal performances,
and present preliminary test results performed during the phase A study.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Multiple cyclotron line-forming regions in GX 301-2
We present two observations of the high-mass X-ray binary GX 301-2 with
NuSTAR, taken at different orbital phases and different luminosities. We find
that the continuum is well described by typical phenomenological models, like a
very strongly absorbed NPEX model. However, for a statistically acceptable
description of the hard X-ray spectrum we require two cyclotron resonant
scattering features (CRSF), one at ~35 keV and the other at ~50 keV. Even
though both features strongly overlap, the good resolution and sensitivity of
NuSTAR allows us to disentangle them at >=99.9% significance. This is the first
time that two CRSFs are seen in GX 301-2. We find that the CRSFs are very
likely independently formed, as their energies are not harmonically related
and, if it were a single line, the deviation from a Gaussian shape would be
very large. We compare our results to archival Suzaku data and find that our
model also provides a good fit to those data. We study the behavior of the
continuum as well as the CRSF parameters as function of pulse phase in seven
phase bins. We find that the energy of the 35 keV CRSF varies smoothly as
function of phase, between 30-38 keV. To explain this variation, we apply a
simple model of the accretion column, taking the altitude of the line-forming
region, the velocity of the in-falling material, and the resulting relativistic
effects into account. We find that in this model the observed energy variation
can be explained simply due to a variation of the projected velocity and
beaming factor of the line forming region towards us.Comment: 18 pages, 10 figures, accepted for publication in A&
Generating-function method for fusion rules
This is the second of two articles devoted to an exposition of the
generating-function method for computing fusion rules in affine Lie algebras.
The present paper focuses on fusion rules, using the machinery developed for
tensor products in the companion article. Although the Kac-Walton algorithm
provides a method for constructing a fusion generating function from the
corresponding tensor-product generating function, we describe a more powerful
approach which starts by first defining the set of fusion elementary couplings
from a natural extension of the set of tensor-product elementary couplings. A
set of inequalities involving the level are derived from this set using Farkas'
lemma. These inequalities, taken in conjunction with the inequalities defining
the tensor products, define what we call the fusion basis. Given this basis,
the machinery of our previous paper may be applied to construct the fusion
generating function. New generating functions for sp(4) and su(4), together
with a closed form expression for their threshold levels are presented.Comment: Harvmac (b mode : 47 p) and Pictex; to appear in J. Math. Phy
Granular circulation in a cylindrical pan: simulations of reversing radial and tangential flows
Granular flows due to simultaneous vertical and horizontal excitations of a
flat-bottomed cylindrical pan are investigated using event-driven molecular
dynamics simulations. In agreement with recent experimental results, we observe
a transition from a solid-like state, to a fluidized state in which circulatory
flow occurs simultaneously in the radial and tangential directions. By going
beyond the range of conditions explored experimentally, we find that each of
these circulations reverse their direction as a function of the control
parameters of the motion. We numerically evaluate the dynamical phase diagram
for this system and show, using a simple model, that the solid-fluid transition
can be understood in terms of a critical value of the radial acceleration of
the pan bottom; and that the circulation reversals are controlled by the phase
shift relating the horizontal and vertical components of the vibrations. We
also discuss the crucial role played by the geometry of the boundary
conditions, and point out a relationship of the circulation observed here and
the flows generated in vibratory conveyors.Comment: 10 pages, 8 figure
- …
