86,280 research outputs found

    On Tracial Operator Representations of Quantum Decoherence Functionals

    Full text link
    A general `quantum history theory' can be characterised by the space of histories and by the space of decoherence functionals. In this note we consider the situation where the space of histories is given by the lattice of projection operators on an infinite dimensional Hilbert space HH. We study operator representations for decoherence functionals on this space of histories. We first give necessary and sufficient conditions for a decoherence functional being representable by a trace class operator on HHH \otimes H, an infinite dimensional analogue of the Isham-Linden-Schreckenberg representation for finite dimensions. Since this excludes many decoherence functionals of physical interest, we then identify the large and physically important class of decoherence functionals which can be represented, canonically, by bounded operators on HHH \otimes H.Comment: 14 pages, LaTeX2

    Synthetic vision and emotion calculation in intelligent virtual human modeling

    Get PDF
    The virtual human technique already can provide vivid and believable human behaviour in more and more scenarios. Virtual humans are expected to replace real humans in hazardous situations to undertake tests and feed back valuable information. This paper will introduce a virtual human with a novel collision-based synthetic vision, short-term memory model and a capability to implement the emotion calculation and decision making. The virtual character based on this model can ‘see’ what is in his field of view (FOV) and remember those objects. After that, a group of affective computing equations have been introduced. These equations have been implemented into a proposed emotion calculation process to enlighten emotion for virtual intelligent huma

    Progress report 3 of cooperative program for design, fabrication, and testing of high modulus composite helicopter shafting

    Get PDF
    This report describes the third phase of work, the objective of which was to overcome the excessive brittleness of the previously developed UH-1 helicopter tail rotor drive shaft design which demonstrated a shaft train weight savings of 53.1% over the current 2024-T3 aluminum shaft train. A materials impact program demonstrated exceptionally noteworthy performance of two woven constructions containing E-glass and PRD 49-III (designation later changed to KEVLAR 49) fibers in an epoxy resin matrix. Thermoplastic matrices and PRD 49-III fiber provided impact resistance at low weight which was superior to composites having the same fiber in a thermoset resin matrix. A design, fabrication, and test program showed that shaft impact resistance could be improved over the previously developed graphite composite design at a cost in shaft train rate savings. The shaft train weight savings of the most impact tolerant construction was 4.0% over the current aluminum shaft train. Alternating plies of graphite and glass appear to provide substantially greater tube impact durability than that provided by hybridization of the two fibers into one tape wound to a ply design equivalent in strength and stiffness to that of the alternating ply design. Recommendations were made to continue research work to exploit the potential for more impact-durable structures through the use of KEVLAR 49 fiber, woven structures, thermoplastic matrices and THORNEL 50-S/KEVLAR 49 blends with thermoset matrices

    A Spin-Orbit Alignment for the Hot Jupiter HATS-3b

    Get PDF
    We have measured the alignment between the orbit of HATS-3b (a recently discovered, slightly inflated Hot Jupiter) and the spin-axis of its host star. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The sky-projected spin-orbit angle of λ=3±25\lambda = 3\pm25^{\circ} was determined from spectroscopic measurements of Rossiter-McLaughlin effect. This is the first exoplanet discovered through the HATSouth transit survey to have its spin-orbit angle measured. Our results indicate that the orbital plane of HATS-3b is consistent with being aligned to the spin axis of its host star. The low obliquity of the HATS-3 system, which has a relatively hot mid F-type host star, agrees with the general trend observed for Hot Jupiter host stars with effective temperatures >6250>6250K to have randomly distributed spin-orbit angles.Comment: 13 pages. Accepted for publication in the Astrophysical Journa

    Barycentric Corrections at 1 cm/s for precise Doppler velocities

    Full text link
    The goal of this paper is to establish the requirements of a barycentric correction with an RMS of 1\lesssim 1 cm/s, which is an order of magnitude better than necessary for the Doppler detection of true Earth analogs (9\sim9 cm/s). We describe the theory and implementation of accounting for the effects on precise Doppler measurements of motion of the telescope through space, primarily from rotational and orbital motion of the Earth, and the motion of the solar system with respect to target star (i.e. the "barycentric correction"). We describe the minimal algorithm necessary to accomplish this and how it differs from a na\"ive subtraction of velocities (i.e. a Galilean transformation). We demonstrate the validity of code we have developed from the California Planet Survey code via comparison with the pulsar timing package, TEMPO2. We estimate the magnitude of various terms and effects, including relativistic effects, and the errors associated with incomplete knowledge of telescope position, timing, and stellar position and motion. We note that chromatic aberration will create uncertainties in the time of observation, which will complicate efforts to detect true Earth analogs. Our code is available for public use and validation.Comment: Accepted for publication in PASP. 14 pages, 14 figures, 2 tables. Code available at http://astroutils.astronomy.ohio-state.edu/exofast
    corecore