334 research outputs found
A high-precision polarimeter
We have built a polarimeter in order to measure the electron beam
polarization in hall C at JLAB. Using a superconducting solenoid to drive the
pure-iron target foil into saturation, and a symmetrical setup to detect the
Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new
standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.
Multiple-spin coherence transfer in linear Ising spin chains and beyond: numerically-optimized pulses and experiments
We study multiple-spin coherence transfers in linear Ising spin chains with
nearest neighbor couplings. These constitute a model for efficient information
transfers in future quantum computing devices and for many multi-dimensional
experiments for the assignment of complex spectra in nuclear magnetic resonance
spectroscopy. We complement prior analytic techniques for multiple-spin
coherence transfers with a systematic numerical study where we obtain strong
evidence that a certain analytically-motivated family of restricted controls is
sufficient for time-optimality. In the case of a linear three-spin system,
additional evidence suggests that prior analytic pulse sequences using this
family of restricted controls are time-optimal even for arbitrary local
controls. In addition, we compare the pulse sequences for linear Ising spin
chains to pulse sequences for more realistic spin systems with additional
long-range couplings between non-adjacent spins. We experimentally implement
the derived pulse sequences in three and four spin systems and demonstrate that
they are applicable in realistic settings under relaxation and experimental
imperfections-in particular-by deriving broadband pulse sequences which are
robust with respect to frequency offsets.Comment: 11 page
Correlated Strength in Nuclear Spectral Function
We have carried out an (e,e'p) experiment at high momentum transfer and in
parallel kinematics to measure the strength of the nuclear spectral function
S(k,E) at high nucleon momenta k and large removal energies E. This strength is
related to the presence of short-range and tensor correlations, and was known
hitherto only indirectly and with considerable uncertainty from the lack of
strength in the independent-particle region. This experiment confirms by direct
measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let
Measurements of electron-proton elastic cross sections for
We report on precision measurements of the elastic cross section for
electron-proton scattering performed in Hall C at Jefferson Lab. The
measurements were made at 28 unique kinematic settings covering a range in
momentum transfer of 0.4 5.5 . These measurements
represent a significant contribution to the world's cross section data set in
the range where a large discrepancy currently exists between the ratio of
electric to magnetic proton form factors extracted from previous cross section
measurements and that recently measured via polarization transfer in Hall A at
Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace
A Measurement of the Electric Form Factor of the Neutron through at (GeV/c)
We report the first measurement of the neutron electric form factor
via using a solid polarized target. was
determined from the beam-target asymmetry in the scattering of longitudinally
polarized electrons from polarized deuterated ammonia, ND. The
measurement was performed in Hall C at Thomas Jefferson National Accelerator
Facility (TJNAF) in quasi free kinematics with the target polarization
perpendicular to the momentum transfer. The electrons were detected in a
magnetic spectrometer in coincidence with neutrons in a large solid angle
segmented detector. We find at (GeV/c).Comment: Latex2e 5 pages, 3 figure
Probing Quark-Gluon Interactions with Transverse Polarized Scattering
We have extracted QCD matrix elements from our data on double polarized
inelastic scattering of electrons on nuclei. We find the higher twist matrix
element \tilde{d_2}, which arises strictly from quark- gluon interactions, to
be unambiguously non zero. The data also reveal an isospin dependence of higher
twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. The
fundamental Bjorken sum rule obtained from the a0 matrix element is satisfied
at our low momentum transfer.Comment: formerly "Nachtmann Moments of the Proton and Deuteron Spin Structure
Functions
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Proton Spin Structure in the Resonance Region
We have examined the spin structure of the proton in the region of the
nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum
transfer of Q^2 = 1.3 GeV^2. Using the Jefferson Lab polarized electron beam, a
spectrometer, and a polarized solid target, we measured the asymmetries
A_parallel and A_perp to high precision, and extracted the asymmetries A_1 and
A_2, and the spin structure functions g_1 and g_2. We found a notably non-zero
A_perp, significant contributions from higher-twist effects, and only weak
support for polarized quark--hadron duality.Comment: 6 pages, 4 figures, REVTeX4, similar to PRL submission, plots
colorized and appenix added, v3: minor edit, matches PR
Probing the high momentum component of the deuteron at high Q^2
The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was
measured over a kinematical range that made it possible to study this reaction
for a set of fixed missing momenta as a function of the neutron recoil angle
theta_nq and to extract missing momentum distributions for fixed values of
theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg)
recent calculations, which predict that final state interactions are small,
agree reasonably well with the experimental data. Therefore these experimental
reduced cross sections provide direct access to the high momentum component of
the deuteron momentum distribution in exclusive deuteron
electro-disintegration.Comment: 5 pages, 2 figure
Optimal Control for Generating Quantum Gates in Open Dissipative Systems
Optimal control methods for implementing quantum modules with least amount of
relaxative loss are devised to give best approximations to unitary gates under
relaxation. The potential gain by optimal control using relaxation parameters
against time-optimal control is explored and exemplified in numerical and in
algebraic terms: it is the method of choice to govern quantum systems within
subspaces of weak relaxation whenever the drift Hamiltonian would otherwise
drive the system through fast decaying modes. In a standard model system
generalising decoherence-free subspaces to more realistic scenarios,
openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of
at most 15% for a standard Trotter expansion. As additional benefit it requires
control fields orders of magnitude lower than the bang-bang decouplings in the
latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
- …
