595 research outputs found
Local matching indicators for transport problems with concave costs
In this paper, we introduce a class of indicators that enable to compute
efficiently optimal transport plans associated to arbitrary distributions of N
demands and M supplies in R in the case where the cost function is concave. The
computational cost of these indicators is small and independent of N. A
hierarchical use of them enables to obtain an efficient algorithm
Multi-confocal fluorescence correlation spectroscopy in living cells using a complementary metal oxide semiconductor-single photon avalanche diode array
International audienceLiving cells are heterogeneous and rapidly changing biological samples. It is thus desirable to measure molecular concentration and dynamics in many locations at the same time. In this note, we present a multi-confocal setup capable of performing simultaneous fluorescence correlation spectroscopy measurements, by focusing the spots with a spatial light modulator and acquiring data with a monolithic 32 × 32 single-photon avalanche photodiode array. A post-processing method is proposed to correct cross-talk effects between neighboring spots. We demonstrate the applicability of our system by simultaneously measuring the diffusion of free enhanced Green Fluorescent Protein (eGFP) molecules at nine different points in living cells
Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference
Bayesian inference is applied to the level fluctuations of two coupled
microwave billiards in order to extract the coupling strength. The coupled
resonators provide a model of a chaotic quantum system containing two coupled
symmetry classes of levels. The number variance is used to quantify the level
fluctuations as a function of the coupling and to construct the conditional
probability distribution of the data. The prior distribution of the coupling
parameter is obtained from an invariance argument on the entropy of the
posterior distribution.Comment: Example from chaotic dynamics. 8 pages, 7 figures. Submitted to PR
Minimum-weight perfect matching for non-intrinsic distances on the line
Consider a real line equipped with a (not necessarily intrinsic) distance. We
deal with the minimum-weight perfect matching problem for a complete graph
whose points are located on the line and whose edges have weights equal to
distances along the line. This problem is closely related to one-dimensional
Monge-Kantorovich trasnport optimization. The main result of the present note
is a "bottom-up" recursion relation for weights of partial minimum-weight
matchings.Comment: 13 pages, figures in TiKZ, uses xcolor package; introduction and the
concluding section have been expande
Substantial and sustained improvements in blood pressure, weight and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care
Hypertension is the second biggest known global risk factor for disease after poor diet; perhaps lifestyle interventions are underutilized? In a previous small pilot study, it was found that a low carbohydrate diet was associated with significant improvements in blood pressure, weight, ‘deprescribing’ of medications and lipid profiles. We were interested to investigate if these results would be replicated in a larger study based in ‘real world’ GP practice. 154 patients with type 2 diabetes or impaired glucose tolerance were recruited into an observational cohort study in primary care. The effects of a low carbohydrate diet sustained for an average of two years (interquartile range 10–32 months) on cardiovascular risk factors were examined. Results demonstrate significant and substantial reductions in blood pressure (mean reduction of systolic BP 10.9 mmHg (interquartile range 0–22 mmHg) (p < 0.0001), mean reduction in diastolic BP 6.3 mmHg (interquartile range 0–12.8 mmHg) (p < 0.0001) and mean weight reduction of 9.5 Kg (interquartile range 5–13 Kg) (p < 0.0001) together with marked improvement in lipid profiles. This occurred despite a 20% reduction in anti-hypertensive medications. This novel and potentially highly effective dietary modification, done very cheaply alongside routine care, offers hope that should be tested in a large prospective trial
Bayesian Model Selection Applied to the Analysis of Fluorescence Correlation Spectroscopy Data of Fluorescent Proteins in Vitro and in Vivo
Fluorescence correlation spectroscopy (FCS) is a powerful technique to investigate molecular dynamics with single molecule sensitivity. In particular, in the life sciences it has found widespread application using fluorescent proteins as molecularly specific labels. However, FCS data analysis and interpretation using fluorescent proteins remains challenging due to typically low signal-to-noise ratio of FCS data and correlated noise in autocorrelated data sets. As a result, naive fitting procedures that ignore these important issues typically provide similarly good fits for multiple competing models without clear distinction of which model is preferred given the signal-to-noise ratio present in the data. Recently, we introduced a Bayesian model selection procedure to overcome this issue with FCS data analysis. The method accounts for the highly correlated noise that is present in FCS data sets and additionally penalizes model complexity to prevent over interpretation of FCS data. Here, we apply this procedure to evaluate FCS data from fluorescent proteins assayed in vitro and in vivo. Consistent with previous work, we demonstrate that model selection is strongly dependent on the signal-to-noise ratio of the measurement, namely, excitation intensity and measurement time, and is sensitive to saturation artifacts. Under fixed, low intensity excitation conditions, physical transport models can unambiguously be identified. However, at excitation intensities that are considered moderate in many studies, unwanted artifacts are introduced that result in nonphysical models to be preferred. We also determined the appropriate fitting models of a GFP tagged secreted signaling protein, Wnt3, in live zebrafish embryos, which is necessary for the investigation of Wnt3 expression and secretion in development. Bayes model selection therefore provides a robust procedure to determine appropriate transport and photophysical models for fluorescent proteins when appropriate models are provided, to help detect and eliminate experimental artifacts in solution, cells, and in living organisms.National Science Foundation (U.S.). Physics of Living Systems ProgramNational Institute of Mental Health (U.S.) (Award U01MH106011
Pathogenic Mouse Hepatitis Virus or Poly(I:C) Induce IL-33 in Hepatocytes in Murine Models of Hepatitis.
International audienceThe IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33
Cortical Representation of Tympanic Membrane Movements due to Pressure Variation: An fMRI Study
Middle ear sensory information has never been localized in the homunculus of the somatosensory cortex (S1). We investigated the somatosensory representation of the middle ear in 15 normal hearing subjects. We applied small air pressure variations to the tympanic membrane while performing a 3T-fMRI study. Unilateral stimulations of the right ear triggered bilateral activations in the caudal part of the postcentral gyrus in Brodmann area 43 (BA 43) and in the auditory associative areas 42 (BA 42) and 22 (BA 22). BA 43 has been found to be involved in activities accompanying oral intake and could be more largely involved in pressure activities in the oropharynx area. The tympanic membrane is indirectly related to the pharynx area through the action of tensor tympani, which is a Eustachian tube muscle. The Eustachian tube muscles have a role in pressure equalization in the middle ear and also have a role in the pharyngeal phase of swallowing. Activation of BA 42 and BA 22 could reflect activations associated with the bilateral acoustic reflex triggered prior to self-vocalization to adjust air pressure in the oropharynx during speech. We propose that BA 43, 42, and 22 are the cortical areas associated with middle ear function. We did not find representation of tympanic membrane movements due to pressure in S1, but its representation in the postcentral gyrus in BA 43 seems to suggest that at least part of this area conveys pure somatosensory information
- …
