261 research outputs found
How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited
In a recent paper dealing with maximum likelihood detection of gravitational
wave chirps from coalescing binaries with unknown parameters we introduced an
accurate representation of the no-signal cumulative distribution of the
supremum of the whole correlator bank. This result can be used to derive a
refined estimate of the number of templates yielding the best tradeoff between
detector's performance (in terms of lost signals among those potentially
detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed;
figure replaced in version
Correlator Bank Detection of GW chirps. False-Alarm Probability, Template Density and Thresholds: Behind and Beyond the Minimal-Match Issue
The general problem of computing the false-alarm rate vs. detection-threshold
relationship for a bank of correlators is addressed, in the context of
maximum-likelihood detection of gravitational waves, with specific reference to
chirps from coalescing binary systems. Accurate (lower-bound) approximants for
the cumulative distribution of the whole-bank supremum are deduced from a class
of Bonferroni-type inequalities. The asymptotic properties of the cumulative
distribution are obtained, in the limit where the number of correlators goes to
infinity. The validity of numerical simulations made on small-size banks is
extended to banks of any size, via a gaussian-correlation inequality. The
result is used to estimate the optimum template density, yielding the best
tradeoff between computational cost and detection efficiency, in terms of
undetected potentially observable sources at a prescribed false-alarm level,
for the simplest case of Newtonian chirps.Comment: submitted to Phys. Rev.
Wolf, Canis lupus, Visits to White-tailed Deer, Odocoileus virginianus, Summer Ranges: Optimal Foraging?
We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves' territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf's summer diet, this Wolf behavior accords with optimal-foraging theory
Status of the Super-B factory Design
The SuperB international team continues to optimize the design of an
electron-positron collider, which will allow the enhanced study of the origins
of flavor physics. The project combines the best features of a linear collider
(high single-collision luminosity) and a storage-ring collider (high repetition
rate), bringing together all accelerator physics aspects to make a very high
luminosity of 10 cm sec. This asymmetric-energy collider
with a polarized electron beam will produce hundreds of millions of B-mesons at
the (4S) resonance. The present design is based on extremely low
emittance beams colliding at a large Piwinski angle to allow very low
without the need for ultra short bunches. Use of crab-waist
sextupoles will enhance the luminosity, suppressing dangerous resonances and
allowing for a higher beam-beam parameter. The project has flexible beam
parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring
for longitudinal polarization of the electron beam at the Interaction Point.
Optimized for best colliding-beam performance, the facility may also provide
high-brightness photon beams for synchrotron radiation applications
Wolf, \u3ci\u3eCanis lupus\u3c/i\u3e, Visits to White-tailed Deer, \u3ci\u3eOdocoileus virginianus\u3c/i\u3e, Summer Ranges: Optimal Foraging?
We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves’ territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf’s summer diet, this Wolf behavior accords with optimal-foraging theory
Accuracy of Estimating Wolf Summer Territories by Daytime Locations
We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versusnight home-range comparisons: (1) daytime 5 0800–2000 h; nighttime 5 2000–0800 h; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods
Baseline Design of the SuperB Factory Injection System
TUPPR088International audienceThe injection complex of the SuperB, B-factory project of INFN consists of a polarized electron gun, a positron production system, electron and positron linac sections, a positron damping ring and the transfer lines connecting these systems and the collider main rings. To keep the ultra high luminosity nearly constant, continuous injection of 4 GeV electrons and 7 GeV positrons in both Low Energy Ring (LER) and High Energy Ring (HER) is necessary. In this paper we describe the baseline design and the beam dynamics studies performed to evaluate the system performance
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
- …
