257 research outputs found
Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer
The goal of the ICEFISH 2004 cruise, which was conducted on board RVIB Nathaniel B. Palmer and traversed the transitional zones linking the South Atlantic to the Southern Ocean, was to compare the evolution, ecology, adaptational biology, community structure, and population dynamics of Antarctic notothenioid fishes relative to the cool/temperate notothenioids of the sub-Antarctic. To place this work in a comprehensive ecological context, cruise participants surveyed the benthos and geology of the biogeographic provinces and island shelves on either side of the Antarctic Polar Front (or Antarctic Convergence). Genome-enabled comparison of the responses of cold-living and temperate notothenioids to heat stress confirmed the sensitivity of the former to a warming Southern Ocean. Successful implementation of the international and interdisciplinary ICEFISH research cruise provides a model for future exploration of the sub-Antarctic sectors of the Indian and Pacific Oceans
First Results from the ISO‐IRAS Faint Galaxy Survey
We present the first results from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12 μm ISOCAM and 90 μm ISOPHOT observations. As of 1997 October, over 500 sources have been observed, with an ISOCAM detection rate over 80%, covering over 1.25 deg^2 of sky to an 11.5 μm point-source completeness limit of approximately 1.0 mJy (corresponding to a ~10 σ detection sensitivity). Observations are presented for nine sources detected by ISOPHOT and ISOCAM early in the survey for which we have ground-based G- and I-band images and optical spectroscopy. The ground-based data confirm that the IIFGS strategy efficiently detects moderate-redshift (z = 0.11-0.38 for this small sample) strong emission line galaxies with L_(60 μm) ≳ 10^(11) L_☉; one of our sample has L_(60 μm) > 10^(12) L_☉ (H_0 = 75 km s^(-1) Mpc^(-1), Ω = 1). The infrared-optical spectral energy distributions are comparable to those of nearby luminous infrared galaxies, which span the range from pure starburst (e.g., Arp 220) to infrared QSO (Mrk 231). Two of the systems show signs of strong interaction, and four show active galactic nucleus (AGN)-like excitation; one of the AGNs, F15390+6038, which shows a high excitation Seyfert 2 spectrum, has an unusually warm far- to mid-infrared color and may be an obscured QSO. The IIFGS sample is one of the largest and deepest samples of infrared-luminous galaxies available, promising to be a rich sample for studying infrared-luminous galaxies up to z ~ 1 and for understanding the evolution of infrared galaxies and the star formation rate in the universe
The ISO-IRAS Faint Galaxy Survey
The ISO-IRAS Faint Galaxy Survey will obtain comprehensive
space- and ground-based observations of the most distant and luminous galaxies in the IRAS Faint Source Survey. ISO observations are obtained by filling short gaps in the ISO observing schedule with pairs of 11.5μm ISOCAM and 90μm ISOPHOT observations. As of the October 1997 date of this Conference, over 500 sources have been observed by ISO with an ISOCAM detection rate exceeding 803. Ground-based
spectrophotometry confirms that the IIFGS efficiently detects moderateredshift, strong emission line Luminous Infrared Galaxies. Spectrophotometry is currently available for 67 galaxies with 0.07 < z < 0. 7 and
L_(fir) > 10^(11) L_☉. The galaxies are comparable to nearby LIGs, showing HII/Liner excitation; about 10% exhibit strong AGN characteristics. As a part of this survey we will cover over 1.25 square degrees of
sky to an 11.5μm limit of approximately l.0mJy, allowing a sensitive estimate of the 11.5μm logN-logS Relationship. Preliminary ll.5μm source counts suggest substantial evolution in the mid-infrared galaxy population
A Loss of Function Screen of Identified Genome-Wide Association Study Loci Reveals New Genes Controlling Hematopoiesis
The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits
Robotic injection of zebrafish embryos for high-throughput screening in disease models
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines
Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1
Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region
Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism
<div><h3>Background</h3><p>The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, <em>Tetrahymena thermophila</em>. <em>Tetrahymena</em> forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of <em>Tetrahymena</em> demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (<em>BTU1</em> and <em>BTU2</em>) encode the canonical β-tubulin, BTU2, and six genes (<em>BLT1-6</em>) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2.</p> <h3>Methodology/Principal Findings</h3><p>With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins <em>in vivo</em>, we transformed <em>Tetrahymena</em> with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically.</p> <h3>Conclusion/Significance</h3><p>We conclude that <em>Tetrahymena</em> uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.</p> </div
WDR55 Is a Nucleolar Modulator of Ribosomal RNA Synthesis, Cell Cycle Progression, and Teleost Organ Development
The thymus is a vertebrate-specific organ where T lymphocytes are generated. Genetic programs that lead to thymus development are incompletely understood. We previously screened ethylnitrosourea-induced medaka mutants for recessive defects in thymus development. Here we report that one of those mutants is caused by a missense mutation in a gene encoding the previously uncharacterized protein WDR55 carrying the tryptophan-aspartate-repeat motif. We find that WDR55 is a novel nucleolar protein involved in the production of ribosomal RNA (rRNA). Defects in WDR55 cause aberrant accumulation of rRNA intermediates and cell cycle arrest. A mutation in WDR55 in zebrafish also leads to analogous defects in thymus development, whereas WDR55-null mice are lethal before implantation. These results indicate that WDR55 is a nuclear modulator of rRNA synthesis, cell cycle progression, and embryonic organogenesis including teleost thymus development
- …
