988 research outputs found
Band Offsets at Semiconductor-Oxide Interfaces from Hybrid Density Functional Calculations
Band offsets at semiconductor-oxide interfaces are determined through a
scheme based on hybrid density functionals, which incorporate a fraction
of Hartree-Fock exchange. For each bulk component, the fraction
is tuned to reproduce the experimental band gap, and the conduction
and valence band edges are then located with respect to a reference level. The
lineup of the bulk reference levels is determined through an interface
calculation, and shown to be almost independent of the fraction .
Application of this scheme to the Si-SiO, SiC-SiO, and Si-HfO
interfaces yields excellent agreement with experiment.Comment: 4 pages, 4 figure
Formation of convective cells in the scrape-off layer of the CASTOR tokamak
Understanding of the scrape-off layer (SOL) physics in tokamaks requires
diagnostics with sufficient temporal and spatial resolution. This contribution
describes results of experiments performed in the SOL of the CASTOR tokamak
(R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the
whole poloidal cross section. The individual probes measure either the ion
saturation current of the floating potential with the spatial resolution up to
3 mm. Experiments are performed in a particular magnetic configuration,
characterized by a long parallel connection length in the SOL, L_par ~q2piR. We
report on measurements in discharges, where the edge electric field is modified
by inserting a biased electrode into the edge plasma. In particular, a complex
picture is observed, if the biased electrode is located inside the SOL. The
poloidal distribution of the floating potential appears to be strongly
non-uniform at biasing. The peaks of potential are observed at particular
poloidal angles. This is interpreted as formation of a biased flux tube, which
emanates from the electrode along the magnetic field lines and snakes q times
around the torus. The resulting electric field in the SOL is 2-dimensional,
having the radial as well as the poloidal component. It is demonstrated that
the poloidal electric field E_pol convects the edge plasma radially due to the
E_pol x B_T drift either inward or outward depending on its sign. The
convective particle flux is by two orders of magnitude larger than the
fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET
Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Explaining a collective false alarm: Context and cognition in the Oxford Street crowd flight incident
Collective false alarms can cause significant disruption, costly emergency response, and distress. Yet an adequate psychological explanation for these incidents is lacking. We interviewed 39 participants and analysed multiple secondary data sources from the 2017 false alarm in Oxford Street, UK, to develop a new explanation of this phenomenon. There was evidence that awareness of recent collectively self-relevant terrorist attacks lowered the threshold for interpreting ambiguous signals as signs of hostile threat. Interviewees also fled and hid after inferring threats from others’ fear and flight responses. Cooperative behaviour was sporadic and was associated with an emergent sense of groupness that occurred in limited locations. The analysis suggests that crowd behaviour in false alarms has more in common with the meaningful behaviour typically found in real emergencies than with the image of uncontrolled ‘mass panic’ portrayed in news media. These findings have implications for policy in preparing the public for terrorist attacks
Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points
This work addresses the question of the relation between strike-point
splitting and magnetic stochasticity at the edge of a poloidally diverted
tokamak in the presence of externally imposed magnetic perturbations. More
specifically, ad-hoc helical current sheets are introduced in order to mimic a
hypothetical screening of the external resonant magnetic perturbations by the
plasma. These current sheets, which suppress magnetic islands, are found to
reduce the amount of splitting expected at the target, which suggests that
screening effects should be observable experimentally. Multiple screening
current sheets reinforce each other, i.e. less current relative to the case of
only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on
Plasma Surface Interactions, to be published in Journal of Nuclear Materials.
Version 2: minor formatting and text improvements, more results mentioned in
the conclusion and abstrac
- …
