28,157 research outputs found
Preliminary tests of an advanced high-temperature combustion system
A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent
Infinite-cluster geometry in central-force networks
We show that the infinite percolating cluster (with density P_inf) of
central-force networks is composed of: a fractal stress-bearing backbone (Pb)
and; rigid but unstressed ``dangling ends'' which occupy a finite
volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is
then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with
exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations
of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical
Review Letter
Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices
We show that negative of the number of floppy modes behaves as a free energy
for both connectivity and rigidity percolation, and we illustrate this result
using Bethe lattices. The rigidity transition on Bethe lattices is found to be
first order at a bond concentration close to that predicted by Maxwell
constraint counting. We calculate the probability of a bond being on the
infinite cluster and also on the overconstrained part of the infinite cluster,
and show how a specific heat can be defined as the second derivative of the
free energy. We demonstrate that the Bethe lattice solution is equivalent to
that of the random bond model, where points are joined randomly (with equal
probability at all length scales) to have a given coordination, and then
subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.
Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics
We study the statics and the dynamics of domain patterns in proper
hexagonal-orthorhombic ferroelastics; these patterns are of particular interest
because they provide a rare physical realization of disclinations in crystals.
Both our static and dynamical theories are based entirely on classical,
nonlinear elasticity theory; we use the minimal theory consistent with
stability, symmetry and ability to explain qualitatively the observed patterns.
After scaling, the only parameters of the static theory are a temperature
variable and a stiffness variable. For moderate to large stiffness, our static
results show nested stars, unnested stars, fans and other nodes, triangular and
trapezoidal regions of trapped hexagonal phase, etc observed in electron
microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is
trigonal-monoclinic); we even find imperfections in some nodes, like those
observed. For small stiffness, we find patterns like those observed in the
mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the
formation of these static patterns, and also transitory structures such as
12-armed bursts, streamers and striations which are also seen experimentally.
The major aspects of the growth-relaxation process are quite unlike those in
systems with conventional order parameters, for it is inherently nonlocal; for
example, the changes from one snapshot to the next are not predictable by
inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at
http://huron.physics.utoronto.ca/~curnoe/sim.htm
Rapid state purification protocols for a Cooper pair box
We propose techniques for implementing two different rapid state purification
schemes, within the constraints present in a superconducting charge qubit
system. Both schemes use a continuous measurement of charge (z) measurements,
and seek to minimize the time required to purify the conditional state. Our
methods are designed to make the purification process relatively insensitive to
rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The
first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67,
030301(R) (2003)] uses the measurement results to control bias (z) pulses so as
to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second
proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90
(2006)] uses a simple feedback protocol which tightly rotates the Bloch vector
about an axis almost parallel with the measurement axis. We compare the
performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments.
Accepted for publication by Physical Review
Conditional control of quantum beats in a cavity QED system
We probe a ground-state superposition that produces a quantum beat in the
intensity correlation of a two-mode cavity QED system. We mix drive with
scattered light from an atomic beam traversing the cavity, and effectively
measure the interference between the drive and the light from the atom. When a
photon escapes the cavity, and upon detection, it triggers our feedback which
modulates the drive at the same beat frequency but opposite phase for a given
time window. This results in a partial interruption of the beat oscillation in
the correlation function, that then returns to oscillate.Comment: 9 pages, 5 figures, XVII Reuni\'on Iberoamericana de \'Optica, X
Encuentro de \'Optica, L\'aseres y Aplicaciones (RIAO-OPTILAS-2010
Simulation of the Performance of the IISc Chemical Kinetics Shock Tube
This report presents the results of an investigation of the performance of the Chemical Kinetics Shock tube at the Indian Institute of Science. The one-dimensional Lagrangian code L1d of Jacobs (1998) has been used to simulate the tube at several operating conditions. The conditions have different shock tube filling pressures, resulting in different shock speeds and different tube lengths, resulting in different dwell times. The simulations have been performed both with and without viscous effects simulated in the tubes. At the lowest shock tube filling pressure condition, the shock tube operates in an overtailored mode and it is undertailored at the higher filling pressure conditions. The results show that viscous effects, which lead to attenuation of the primary shock and heat loss from the test gas to the tube walls, result in an increasing p5 pressure during the test time. The viscous effects are more dominant at the condition with the lowest filling pressure (highest primary shock speed). A simulation run for 50 ms after diaphragm rupture or the configuration with a long driver tube shows that the test gas is periodically re-compressed by reflections of waves along the driver and shock tubes. The recompressions become sequentially weaker and thus the test gas temperature and pressure are never raised to as high levels as for the primary compression
On coalgebras with internal moves
In the first part of the paper we recall the coalgebraic approach to handling
the so-called invisible transitions that appear in different state-based
systems semantics. We claim that these transitions are always part of the unit
of a certain monad. Hence, coalgebras with internal moves are exactly
coalgebras over a monadic type. The rest of the paper is devoted to supporting
our claim by studying two important behavioural equivalences for state-based
systems with internal moves, namely: weak bisimulation and trace semantics.
We continue our research on weak bisimulations for coalgebras over order
enriched monads. The key notions used in this paper and proposed by us in our
previous work are the notions of an order saturation monad and a saturator. A
saturator operator can be intuitively understood as a reflexive, transitive
closure operator. There are two approaches towards defining saturators for
coalgebras with internal moves. Here, we give necessary conditions for them to
yield the same notion of weak bisimulation.
Finally, we propose a definition of trace semantics for coalgebras with
silent moves via a uniform fixed point operator. We compare strong and weak
bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page
- …
