2,803 research outputs found
Acoustic confinement and Stimulated Brillouin Scattering in integrated optical waveguides
We examine the effect of acoustic mode confinement on Stimulated Brillouin
Scattering in optical waveguides that consist of a guiding core embedded in a
solid substrate. We find that SBS can arise due to coupling to acoustic modes
in three different regimes. First, the acoustic modes may be guided by total
internal reflection; in this case the SBS gain depends directly on the degree
of confinement of the acoustic mode in the core, which is in turn determined by
the acoustic V-parameter. Second, the acoustic modes may be leaky, but may
nevertheless have a sufficiently long lifetime to have a large effect on the
SBS gain; the lifetime of acoustic modes in this regime depends not only on the
contrast in acoustic properties between the core and the cladding, but is also
highly dependent on the waveguide dimensions. Finally SBS may occur due to
coupling to free modes, which exist even in the absence of acoustic
confinement; we find that the cumulative effect of coupling to these
non-confined modes results in significant SBS gain. We show how the different
acoustic properties of core and cladding lead to these different regimes, and
discuss the feasibility of SBS experiments using different material systems
Optimizing optical Bragg scattering for single-photon frequency conversion
We develop a systematic theory for optimising single-photon frequency
conversion using optical Bragg scattering. The efficiency and phase-matching
conditions for the desired Bragg scattering conversion as well as spurious
scattering and modulation instability are identified. We find that third-order
dispersion can suppress unwanted processes, while dispersion above the fourth
order limits the maximum conversion efficiency. We apply the optimisation
conditions to frequency conversion in highly nonlinear fiber, silicon nitride
waveguides and silicon nanowires. Efficient conversion is confirmed using full
numerical simulations. These design rules will assist the development of
efficient quantum frequency conversion between multicolour single photon
sources for integration in complex quantum networks.Comment: 9 pages, 14 figure
Pulse Evolution and Phase Sensitive Amplification in Silicon Waveguides
We for the first time provide an analytic solution for pulse propagation and
phase sensitive amplification in the regime of high nonlinearity in silicon
waveguides including two-photon absorption (TPA) and free carriers. Our
analytic results clearly explain why and how the TPA and free carriers affect
the signal gain. These observation are confirmed with numerical modelling and
experimental results.Comment: We added the detailed derivation of the this pape
Gap soliton formation by nonlinear supratransmission in Bragg media
A Bragg medium in the nonlinear Kerr regime, submitted to incident
cw-radiation at a frequency in a band gap, switches from total reflection to
transmission when the incident energy overcomes some threshold. We demonstrate
that this is a result of nonlinear supratransmission, which allows to prove
that i) the threshold incident amplitude is simply expressed in terms of the
deviation from the Bragg resonance, ii) the process is not the result of a
shift of the gap in the nonlinear dispersion relation, iii) the transmission
does occur by means of gap soliton trains, as experimentally observed [D.
Taverner et al., Opt Lett 23 (1998) 328], iv) the required energy tends to zero
close to the band edge.Comment: 5 figures, submitted to EuroPhysics Letter
Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss
We derive a set of design guidelines and a figure of merit to aid the
engineering process of on-chip waveguides for strong Stimulated Brillouin
Scattering (SBS). To this end, we examine the impact of several types of loss
on the total amplification of the Stokes wave that can be achieved via SBS. We
account for linear loss and nonlinear loss of third order (two-photon
absorption, 2PA) and fifth order, most notably 2PA-induced free carrier
absorption (FCA). From this, we derive an upper bound for the output power of
continuous-wave Brillouin-lasers and show that the optimal operating conditions
and maximal realisable Stokes amplification of any given waveguide structure
are determined by a dimensionless parameter involving the
SBS-gain and all loss parameters. We provide simple expressions for optimal
pump power, waveguide length and realisable amplification and demonstrate their
utility in two example systems. Notably, we find that 2PA-induced FCA is a
serious limitation to SBS in silicon and germanium for wavelengths shorter than
2200nm and 3600nm, respectively. In contrast, three-photon absorption is of no
practical significance
- …
