1,304 research outputs found
VE-cadherin and claudin-5: it takes two to tango
Endothelial barrier function requires the adhesive activity of VE-cadherin
and claudin-5, which are key components of adherens and tight endothelial
junctions, respectively. Emerging evidence suggests that VE-cadherin controls
claudin-5 expression by preventing the nuclear accumulation of FoxO1 and
-catenin, which repress the claudin-5 promoter. This indicates that a crosstalk
mechanism operates between these junctional structures
In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography
The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD)
Molecular Imaging of Inflammation in Aortic Aneurysmal Disease
The high mortality rate of diseases of the aorta has its foundation in imaging methods that define anatomy and disease burden but less so upon the diagnosis of asymptomatic conditions, rate of aneurysm expansion, or prediction of rupture. However, anatomical features can now be co-localized with molecular and physiological activity. The advancement of nanoparticles based upon iron oxide will also serve to bring a trio of magnetic, radionuclide, and optical imaging modalities together. The combinations of these technologies are still at the preclinical refinement stage but already enzyme-activatable probes have b
The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase
DNA double-strand break repair through the RAD52 homologous recombination
pathway in the yeast Saccharomyces cerevisiae requires, among others, the
RAD51, RAD52, and RAD54 genes. The biological importance of homologous
recombination is underscored by the conservation of the RAD52 pathway from
fungi to humans. The critical roles of the RAD52 group proteins in the
early steps of recombination, the search for DNA homology and strand
exchange, are now becoming apparent. Here, we report the purification of
the human Rad54 protein. We showed that human Rad54 has ATPase activity
that is absolutely dependent on double-stranded DNA. Unexpectedly, the
ATPase activity appeared not absolutely required for the DNA repair
function of human Rad54 in vivo. Despite the presence of amino acid
sequence motifs that are conserved in a large family of DNA helicases, no
helicase activity of human Rad54 was observed on a variety of different
DNA substrates. Possible functions of human Rad54 in homologous
recombination that couple the energy gained from ATP hydrolysis to
translocation along DNA, rather than disruption of base pairing, are
discussed
Measuring impairments of functioning and health in patients with axial spondyloarthritis by using the ASAS Health Index and the Environmental Item Set : translation and cross-cultural adaptation into 15 languages
Introduction: The Assessments of SpondyloArthritis international society Health Index (ASAS HI) measures functioning and health in patients with spondyloarthritis (SpA) across 17 aspects of health and 9 environmental factors (EF). The objective was to translate and adapt the original English version of the ASAS HI, including the EF Item Set, cross-culturally into 15 languages.
Methods: Translation and cross-cultural adaptation has been carried out following the forward-backward procedure. In the cognitive debriefing, 10 patients/country across a broad spectrum of sociodemographic background, were included.
Results: The ASAS HI and the EF Item Set were translated into Arabic, Chinese, Croatian, Dutch, French, German, Greek, Hungarian, Italian, Korean, Portuguese, Russian, Spanish, Thai and Turkish. Some difficulties were experienced with translation of the contextual factors indicating that these concepts may be more culturally-dependent. A total of 215 patients with axial SpA across 23 countries (62.3% men, mean (SD) age 42.4 (13.9) years) participated in the field test. Cognitive debriefing showed that items of the ASAS HI and EF Item Set are clear, relevant and comprehensive. All versions were accepted with minor modifications with respect to item wording and response option. The wording of three items had to be adapted to improve clarity. As a result of cognitive debriefing, a new response option 'not applicable' was added to two items of the ASAS HI to improve appropriateness.
Discussion: This study showed that the items of the ASAS HI including the EFs were readily adaptable throughout all countries, indicating that the concepts covered were comprehensive, clear and meaningful in different cultures
Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma
Purpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. Results: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. Conclusions: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research
An MR-compatible antenna and application in a murine superficial hyperthermia applicator
In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< −15 dB) for all working conditions and is MR-compatible
Absence of cardiovascular manifestations in a haploinsufficient Tgfbr1 mouse model
Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor β (TGFβ)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGFβ receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGFβ signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378*nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS
BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells
Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2
- …
