1,769 research outputs found
Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear
Of all current detection techniques with nanometer resolution, only X-ray
microscopy allows imaging nanoparticles in suspension. Can it also be used to
investigate structural dynamics? When studying response to mechanical stimuli,
the challenge lies in applying them with precision comparable to spatial
resolution. In the first shear experiments performed in an X-ray microscope, we
accomplished this by inserting a piezo actuator driven shear cell into the
focal plane of a scanning transmission X-ray microscope (STXM). Thus
shear-induced reorganization of magnetite nanoparticle aggregates could be
demonstrated in suspension. As X-ray microscopy proves suitable for studying
structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia
Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?
On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal
mass ejection (CME) was also associated with this flare. There was an instant
increase in proton flux with peak at MeV, leading to S2 solar
radiation storm level. In about 20 minutes after the X-ray emission, the solar
particles reached the Earth.It was the source of the first (since December
2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was
detected by neutron monitors (NM) and other ground based detectors. Here we
present an observation by the Tupi muon telescopes (Niteroi, Brazil, , , 3 m above sea level) of the enhancement of muons at ground
level associated with this M5.1-class solar flare. The Tupi telescopes
registered a muon excess over background in the 5-min binning time
profile. The Tupi signal is studied in correlation with data obtained by
space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air
shower detectors (the IceTop surface component of the IceCube neutrino
observatory). We also report the observation of the muon signal possibly
associated with the CME/sheath striking the Earth magnetosphere on May 20,
2012. We show that the observed temporal correlation of the muon excess
observed by the Tupi muon telescopes with solar transient events suggests a
real physical connection between them. Our observation indicates that
combination of two factors, the low energy threshold of the Tupi muon
telescopes and the location of the Tupi experiment in the South Atlantic
Anomaly region, can be favorable in the study and detection of the solar
transient events. Our experiment provides new data complementary to other
techniques (space and ground based) in the study of solar physics.Comment: 9 pages, 10 figure
A different look at the spin state of Co ions in CoO pyramidal coordination
Using soft-x-ray absorption spectroscopy at the Co- and O- edges,
we demonstrate that the Co ions with the CoO pyramidal
coordination in the layered SrCoOCl compound are unambiguously in the
high spin state. Our result questions the reliability of the spin state
assignments made so far for the recently synthesized layered cobalt
perovskites, and calls for a re-examination of the modeling for the complex and
fascinating properties of these new materials.Comment: 5 pages 3 figure
Magnetoelectric and structural properties of Y2CoMnO6: The role of antisite defects
We have carried out an investigation on the magnetoelectric properties of the presumed multiferroic Y2CoMnO6 with different degrees of Co/Mn atomic ordering. The magnetic ground state was studied by neutron diffraction, showing a collinear ferromagnetic (FM) ordering of Co and Mn moments with a small antiferromagnetic canting. No superstructure peaks from an E-type magnetic structure were detected in our measurements. Magnetic measurements reveal FM transitions with pinned magnetic domains. The degree of Co/Mn ordering affects the Curie temperature only a little, but has strong effects on the magnetic hysteresis loops, and the FM moment signal at high field increases with increasing such order. The loops display steps at critical fields whose number and extent depends on each specimen. The most ordered sample exhibits the greatest steps ascribed to the alignment of magnetic domains separated by antiphase boundaries. All samples are insulators exhibiting low dielectric loss and dielectric constants at low temperature. On warming, they show a step increase in the real dielectric permittivity accompanied by peaks in the dielectric loss typical of thermally activated hopping processes. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature for these compounds that increases with increasing the Co/Mn ordering. There is no correlation between the magnetic transition and the onset of pyroelectric current. No significant changes are observed in the pyroelectric effect measured under an external magnetic field, so magnetoelectric coupling is negligible. This paper identifies the pyroelectric current as thermally stimulated depolarization current ascribed to the reorientation of defect dipoles with activation energy of about 0.05 eV. Therefore, no ferroelectric transition occurs in these compounds, discarding the existence of intrinsic magnetoelectric multiferroicity.For financial support we thank the Spanish Ministerio de Economía y Competitividad (MINECO) (Projects No. MAT2012-38213-C02-01 and -02 and No. MAT2015-68760-C1-1 and -2-P, cofunded by the European Regional Development Fund [ERDF] from the European Union) and Diputación General de Aragón (DGA, project E-69). J.A. Rodríguez-Velamazan acknowledges CSIC for the JAEdoc contract.Peer Reviewe
Systematics of electronic and magnetic properties in the transition metal doped SbTe quantum anomalous Hall platform
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge
in magnetically-doped topological insulators. Although its general
phenomenology is well established, the microscopic origin is far from being
properly understood and controlled. Here we report on a detailed and systematic
investigation of transition-metal (TM)-doped SbTe. By combining density
functional theory (DFT) calculations with complementary experimental
techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission
(resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete
spectroscopic characterization of both electronic and magnetic properties. Our
results reveal that the TM dopants not only affect the magnetic state of the
host material, but also significantly alter the electronic structure by
generating impurity-derived energy bands. Our findings demonstrate the
existence of a delicate interplay between electronic and magnetic properties in
TM-doped TIs. In particular, we find that the fate of the topological surface
states critically depends on the specific character of the TM impurity: while
V- and Fe-doped SbTe display resonant impurity states in the vicinity
of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The
single-ion magnetic anisotropy energy and easy axis, which control the magnetic
gap opening and its stability, are also found to be strongly TM
impurity-dependent and can vary from in-plane to out-of-plane depending on the
impurity and its distance from the surface. Overall, our results provide
general guidelines for the realization of a robust QAHE in TM-doped
SbTe in the ferromagnetic state.Comment: 40 pages, 13 figure
Magnetic Structures of High Temperature Phases of TbBaCo2O5.5
Neutron diffraction studies have been carried out on a single crystal of
oxygen-deficient perovskite TbBaCo2O5.5 in the temperature range of 7-370 K.
There have been observed several magnetic or structural transitions. Among
these, the existence of the transitions to the insulating phase from the
metallic one at ~340 K, to the one with the ferromagnetic moment at ~280 K and
possibly to the antiferromagnetic one at ~260 K, with decreasing temperature T
correspond to those reported in former works. We have studied the magnetic
structures at 270 K and 250 K and found that all Co3+ ions of the CoO6
octahedra are in the low spin state and those of the CoO5 pyramids carry spins
which are possibly in the intermediate spin state. Non-collinear magnetic
structures are proposed at these temperatures. Two other transitions have also
been observed at the temperatures, ~100 K and ~250 K.Comment: 9 pages, 2 tables, 10 figure
Synchronization of multi-phase oscillators: An Axelrod-inspired model
Inspired by Axelrod's model of culture dissemination, we introduce and
analyze a model for a population of coupled oscillators where different levels
of synchronization can be assimilated to different degrees of cultural
organization. The state of each oscillator is represented by a set of phases,
and the interaction --which occurs between homologous phases-- is weighted by a
decreasing function of the distance between individual states. Both ordered
arrays and random networks are considered. We find that the transition between
synchronization and incoherent behaviour is mediated by a clustering regime
with rich organizational structure, where some of the phases of a given
oscillator can be synchronized to a certain cluster, while its other phases are
synchronized to different clusters.Comment: 6 pages, 5 figure
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- …
