3,350 research outputs found
Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory
A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments
AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations
This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event
How Water's Properties Are Encoded in Its Molecular Structure and Energies.
How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties
Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1-MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s-100s-keV energy seed population, followed by enhancements to the \u3e1-MeV population and eventually leading to enhancements in the multi-MeV electron population these observations provide the clearest evidence to date of the timing and nature of the radial transport of a 100s keV electron seed population into the heart of the outer belt and subsequent local acceleration of those electrons to higher radiation belt energies. Key Points Quantification of phase space density gradients inside geostationary orbit Clear differences between the source of low energy and relativistic electrons Clear observations of how the acceleration process evolves in energy
Reply to comment on “MeV magnetosheath ions energized at the bow shock” by J. Chen, TA Fritz, and RB Sheldon
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
At low temperatures, a spin ice enters a Coulomb phase - a state with
algebraic correlations and topologically constrained spin configurations. In
Ho2Ti2O7, we have observed experimentally that this process is accompanied by a
non-standard temperature evolution of the wave vector dependent magnetic
susceptibility, as measured by neutron scattering. Analytical and numerical
approaches reveal signatures of a crossover between two Curie laws, one
characterizing the high temperature paramagnetic regime, and the other the low
temperature topologically constrained regime, which we call the spin liquid
Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two
Curie laws appears to be a general property of the emergent gauge field for a
classical spin liquid, and ii) sheds light on the experimental difficulty of
measuring a precise Curie-Weiss temperature in frustrated materials; iii) the
mapping between gauge and spin degrees of freedom means that the susceptibility
at finite wave vector can be used as a local probe of fluctuations among
topological sectors.Comment: 10 pages, 5 figure
How visual perceptual grouping influences foot placement
Everybody would agree that vision guides locomotion; but how does vision influence choice when there are different solutions for possible foot placement? We addressed this question by investigating the impact of perceptual grouping on foot placement in humans. Participants performed a stepping stone task in which pathways consisted of target stones in a spatially regular path of foot falls and visual distractor stones in their proximity. Target and distractor stones differed in shape and colour so that each subset of stones could be easily grouped perceptually. In half of the trials, one target stone swapped shape and colour with a distractor in its close proximity. We show that in these ‘swapped’ conditions, participants chose the perceptually groupable, instead of the spatially regular, stepping location in over 40% of trials, even if the distance between perceptually groupable steps was substantially larger than normal step width/length. This reveals that the existence of a pathway that could be traversed without spatial disruption to periodic stepping is not sufficient to guarantee participants will select it and suggests competition between different types of visual input when choosing foot placement. We propose that a bias in foot placement choice in favour of visual grouping exists as, in nature, sudden changes in visual characteristics of the ground increase the uncertainty for stability
Density and Viscosity of Partially Carbonated Aqueous Tertiary Alkanolamine Solutions at Temperatures between (298.15 and 353.15) K
Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water
Spherical truncations of Coulomb interactions in standard models for water
permit efficient molecular simulations and can give remarkably accurate results
for the structure of the uniform liquid. However truncations are known to
produce significant errors in nonuniform systems, particularly for
electrostatic properties. Local molecular field (LMF) theory corrects such
truncations by use of an effective or restructured electrostatic potential that
accounts for effects of the remaining long-ranged interactions through a
density-weighted mean field average and satisfies a modified Poisson's equation
defined with a Gaussian-smoothed charge density. We apply LMF theory to three
simple molecular systems that exhibit different aspects of the failure of a
naive application of spherical truncations -- water confined between
hydrophobic walls, water confined between atomically-corrugated hydrophilic
walls, and water confined between hydrophobic walls with an applied electric
field. Spherical truncations of 1/r fail spectacularly for the final system in
particular, and LMF theory corrects the failings for all three. Further, LMF
theory provides a more intuitive way to understand the balance between local
hydrogen bonding and longer-ranged electrostatics in molecular simulations
involving water.Comment: Submitted to PNA
Spin Dynamics at Very Low Temperature in Spin Ice DyTiO
We have performed AC susceptibility and DC magnetic relaxation measurements
on the spin ice system DyTiO down to 0.08 K. The relaxation time of
the magnetization has been estimated below 2 K down to 0.08 K. The spin
dynamics of DyTiO is well described by using two relaxation times
( (short time) and (long time)). Both and increase on cooling. Assuming the Arrhenius law in the
temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K,
both and show a clear deviation from the thermal
activated dynamics toward temperature independent relaxation, suggesting a
quantum dynamics.Comment: 4 page
- …
