3,350 research outputs found

    Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory

    Get PDF
    A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments

    AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    How Water's Properties Are Encoded in Its Molecular Structure and Energies.

    Get PDF
    How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties

    Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event

    Get PDF
    Abstract We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1-MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s-100s-keV energy seed population, followed by enhancements to the \u3e1-MeV population and eventually leading to enhancements in the multi-MeV electron population these observations provide the clearest evidence to date of the timing and nature of the radial transport of a 100s keV electron seed population into the heart of the outer belt and subsequent local acceleration of those electrons to higher radiation belt energies. Key Points Quantification of phase space density gradients inside geostationary orbit Clear differences between the source of low energy and relativistic electrons Clear observations of how the acceleration process evolves in energy

    Topological Sector Fluctuations and Curie Law Crossover in Spin Ice

    Get PDF
    At low temperatures, a spin ice enters a Coulomb phase - a state with algebraic correlations and topologically constrained spin configurations. In Ho2Ti2O7, we have observed experimentally that this process is accompanied by a non-standard temperature evolution of the wave vector dependent magnetic susceptibility, as measured by neutron scattering. Analytical and numerical approaches reveal signatures of a crossover between two Curie laws, one characterizing the high temperature paramagnetic regime, and the other the low temperature topologically constrained regime, which we call the spin liquid Curie law. The theory is shown to be in excellent agreement with neutron scattering experiments. On a more general footing, i) the existence of two Curie laws appears to be a general property of the emergent gauge field for a classical spin liquid, and ii) sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials; iii) the mapping between gauge and spin degrees of freedom means that the susceptibility at finite wave vector can be used as a local probe of fluctuations among topological sectors.Comment: 10 pages, 5 figure

    How visual perceptual grouping influences foot placement

    Get PDF
    Everybody would agree that vision guides locomotion; but how does vision influence choice when there are different solutions for possible foot placement? We addressed this question by investigating the impact of perceptual grouping on foot placement in humans. Participants performed a stepping stone task in which pathways consisted of target stones in a spatially regular path of foot falls and visual distractor stones in their proximity. Target and distractor stones differed in shape and colour so that each subset of stones could be easily grouped perceptually. In half of the trials, one target stone swapped shape and colour with a distractor in its close proximity. We show that in these ‘swapped’ conditions, participants chose the perceptually groupable, instead of the spatially regular, stepping location in over 40% of trials, even if the distance between perceptually groupable steps was substantially larger than normal step width/length. This reveals that the existence of a pathway that could be traversed without spatial disruption to periodic stepping is not sufficient to guarantee participants will select it and suggests competition between different types of visual input when choosing foot placement. We propose that a bias in foot placement choice in favour of visual grouping exists as, in nature, sudden changes in visual characteristics of the ground increase the uncertainty for stability

    Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water

    Full text link
    Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to three simple molecular systems that exhibit different aspects of the failure of a naive application of spherical truncations -- water confined between hydrophobic walls, water confined between atomically-corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.Comment: Submitted to PNA

    Spin Dynamics at Very Low Temperature in Spin Ice Dy2_2Ti2_2O7_7

    Full text link
    We have performed AC susceptibility and DC magnetic relaxation measurements on the spin ice system Dy2_2Ti2_2O7_7 down to 0.08 K. The relaxation time of the magnetization has been estimated below 2 K down to 0.08 K. The spin dynamics of Dy2_2Ti2_2O7_7 is well described by using two relaxation times (τS\tau_{\rm S} (short time) and τL\tau_{\rm L} (long time)). Both τS\tau_{\rm S} and τL\tau_{\rm L} increase on cooling. Assuming the Arrhenius law in the temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K, both τS\tau_{\rm S} and τL\tau_{\rm L} show a clear deviation from the thermal activated dynamics toward temperature independent relaxation, suggesting a quantum dynamics.Comment: 4 page
    corecore