304 research outputs found
Dense gas and star formation in individual Giant Molecular Clouds in M31
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.9 pages, 6 figures, accepted for publication in MNRASStudies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR - dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.Peer reviewedFinal Published versio
First Resolved Dust Continuum Measurements of Individual Giant Molecular Clouds in the Andromeda Galaxy
© 2020 The American Astronomical Society.In our local Galactic neighborhood, molecular clouds are best studied using a combination of dust measurements, to determine robust masses, sizes, and internal structures of the clouds, and molecular-line observations to determine cloud kinematics and chemistry. We present here the first results of a program designed to extend such studies to nearby galaxies beyond the Magellanic Clouds. Utilizing the wideband upgrade of the Submillimeter Array (SMA) at 230 GHz, we have obtained the first continuum detections of the thermal dust emission on sub-GMC scales (∼15 pc) within the Andromeda galaxy (M31). These include the first resolved continuum detections of dust emission from individual giant molecular clouds (GMCs) beyond the Magellanic Clouds. Utilizing a powerful capability of the SMA, we simultaneously recorded CO(2-1) emission with identical (u, v) coverage, astrometry, and calibration, enabling the first measurements of the CO conversion factor, α CO(2-1), toward individual GMCs across an external galaxy. Our direct measurement yields an average CO-to-dust mass conversion factor of α' CO-dust = 0.042 ± 0.018 M o (K km s -1 pc 2) -1 for the J = 2-1 transition. This value does not appear to vary with galactocentric radius. Assuming a constant gas-to-dust ratio of 136, the resulting α CO = 5.7 ± 2.4 M o (K km s -1 pc 2) -1 for the 2-1 transition is in excellent agreement with that of GMCs in the Milky Way, given the uncertainties. Finally, using the same analysis techniques, we compare our results with observations of the local Orion molecular clouds, placed at the distance of M31 and simulated to appear as they would if observed by the SMA.Peer reviewedFinal Published versio
A rotating disk around the very young massive star AFGL 490
We observed the embedded, young 8--10 Msun star AFGL 490 at subarcsecond
resolution with the Plateau de Bure Interferometer in the C17O (2--1)
transition and found convincing evidence that AFGL 490 is surrounded by a
rotating disk. Using two-dimensional modeling of the physical and chemical disk
structure coupled to line radiative transfer, we constrain its basic
parameters. We obtain a relatively high disk mass of 1 Msun and a radius of ~
1500 AU. A plausible explanation for the apparent asymmetry of the disk
morphology is given.Comment: 4 pages, 5 figure
Molecular Cloud-scale Star Formation in NGC 300
We present the results of a galaxy-wide study of molecular gas and star
formation in a sample of 76 HII regions in the nearby spiral galaxy NGC 300. We
have measured the molecular gas at 250 pc scales using pointed CO(J=2-1)
observations with the APEX telescope. We detect CO in 42 of our targets,
deriving molecular gas masses ranging from our sensitivity limit of ~10^5 Msun
to 7x10^5 Msun. We find a clear decline in the CO detection rate with
galactocentric distance, which we attribute primarily to the decreasing radial
metallicity gradient in NGC 300. We combine GALEX FUV, Spitzer 24 micron, and
H-alpha narrowband imaging to measure the star formation activity in our
sample. We have developed a new direct modeling approach for computing star
formation rates that utilizes these data and population synthesis models to
derive the masses and ages of the young stellar clusters associated with each
of our HII region targets. We find a characteristic gas depletion time of 230
Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky
Way Giant Molecular Clouds than the longer (>2 Gyr) global depletion times
derived for entire galaxies and kpc-sized regions within them. This difference
is partially due to the fact that our study accounts for only the gas and stars
within the youngest star forming regions. We also note a large scatter in the
NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent
with the Milky Way cloud results. This scatter likely represents real
differences in giant molecular cloud physical properties such as the dense gas
fraction.Comment: 42 pages, 14 figures, 7 tables. Includes a complete image atlas of
our HII region targets. ASCII versions of tables will be available
electronically after paper is published. Accepted for publication in the
Astrophysical Journa
Nothing to hide: An X-ray survey for young stellar objects in the Pipe Nebula
We have previously analyzed sensitive mid-infrared observations to establish
that the Pipe Nebula has a very low star-formation efficiency. That study
focused on YSOs with excess infrared emission (i.e, protostars and pre-main
sequence stars with disks), however, and could have missed a population of more
evolved pre-main sequence stars or Class III objects (i.e., young stars with
dissipated disks that no longer show excess infrared emission). Evolved
pre-main sequence stars are X-ray bright, so we have used ROSAT All-Sky Survey
data to search for diskless pre-main sequence stars throughout the Pipe Nebula.
We have also analyzed archival XMM-Newton observations of three prominent areas
within the Pipe: Barnard 59, containing a known cluster of young stellar
objects; Barnard 68, a dense core that has yet to form stars; and the Pipe
molecular ring, a high-extinction region in the bowl of the Pipe. We
additionally characterize the X-ray properties of YSOs in Barnard 59. The ROSAT
and XMM-Newton data provide no indication of a significant population of more
evolved pre-main sequence stars within the Pipe, reinforcing our previous
measurement of the Pipe's very low star formation efficiency.Comment: Accepted for publication in Ap
An ALMA study of the Orion Integral Filament : I. Evidence for narrow fibers in a massive cloud
© 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods. We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N 2H + (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or ~2000 AU). Results. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers.Peer reviewedFinal Published versio
The HP2 Survey - IV. The Pipe nebula : Effective dust temperatures in dense cores
14 pages, 22 figures. Accepted for publication in Astronomy & Astrophysics Reproduced with permission from Astronomy & Astrophysics. © 2018 ESOMulti-wavelength observations in the sub-millimeter regime provide information on the distribution of both the dust column density and the effective dust temperature in molecular clouds. In this study, we created high-resolution and high-dynamic-range maps of the Pipe nebula region and explored the value of dust-temperature measurements in particular towards the dense cores embedded in the cloud. The maps are based on data from the Herschel and Planck satellites, and calibrated with a near-infrared extinction map based on 2MASS observations. We have considered a sample of previously defined cores and found that the majority of core regions contain at least one local temperature minimum. Moreover, we observed an anti-correlation between column density and temperature. The slope of this anti-correlation is dependent on the region boundaries and can be used as a metric to distinguish dense from diffuse areas in the cloud if systematic effects are addressed appropriately. Employing dust-temperature data thus allows us to draw conclusions on the thermodynamically dominant processes in this sample of cores: External heating by the interstellar radiation field and shielding by the surrounding medium. In addition, we have taken a first step towards a physically motivated core definition by recognising that the column-densityerature anti-correlation is sensitive to the core boundaries. Dust-temperature maps therefore clearly contain valuable information about the physical state of the observed medium.Peer reviewe
The structured environments of embedded star-forming cores. PACS and SPIRE mapping of the enigmatic outflow source UYSO 1
The intermediate-mass star-forming core UYSO 1 has previously been found to
exhibit intriguing features. While deeply embedded and previously only
identified by means of its (sub-)millimeter emission, it drives two powerful,
dynamically young, molecular outflows. Although the process of star formation
has obviously started, the chemical composition is still pristine. We present
Herschel PACS and SPIRE continuum data of this presumably very young region.
The now complete coverage of the spectral energy peak allows us to precisely
constrain the elevated temperature of 26 - 28 K for the main bulge of gas
associated with UYSO1, which is located at the interface between the hot HII
region Sh 2-297 and the cold dark nebula LDN 1657A. Furthermore, the data
identify cooler compact far-infrared sources of just a few solar masses, hidden
in this neighbouring dark cloud.Comment: accepted contribution for the forthcoming Herschel Special Issue of
A&A, 5 pages (will appear as 4-page letter in the journal), 6 figure file
- …
