644 research outputs found

    The First Swedish Bride in Minnesota

    Get PDF

    The land use change impact of biofuels consumed in the EU: Quantification of area and greenhouse gas impacts

    Get PDF
    Biofuels are promoted as an option to reduce climate emissions from the transport sector. As most biofuels are currently produced from land based crops, there is a concern that the increased consumption of biofuels requires agricultural expansion at a global scale, leading to additional carbon emissions. This effect is called Indirect Land Use Change, or ILUC. The EU Renewable Energy Directive (2009/28/EC) directed the European Commission to develop a methodology to account for the ILUC effect. The current study serves to provide new insights to the European Commission and other stakeholders about these indirect carbon and land impacts from biofuels consumed in the EU, with more details on production processes and representation of individual feedstocks than was done before. ILUC cannot be observed or measured in reality, because it is entangled with a large number of other changes in agricultural markets at both global and local levels. The effect can only be estimated through the use of models. The current study is part of a continuous effort to improve the understanding and representation of ILUC

    Predatory efficiency and energetics of belted kingfishers wintering along the Mad River

    Get PDF
    Belted kingfishers (Ceryle alcyon) were studied for two winters along the lower fad River, Humboldt County, California. Kingfishers spent 79.6 percent of daylight hours hunting, 12.2 percent inactively perched, 4.0 percent on intraspecific interactions, 2.3 percent handling prey, 1.6 percent preening and bathing, 0.18 percent in interspecific interactions, and 0.1 percent flying in response to human disturbances. Kingfishers spent 11 percent more time hunting during the winter of 1975-76 than during the less severe winter of 1976-77. Fish comprised 91 percent of the prey identified; salmonids (Salmonidae), sculpins (Cottidae), and sticklebacks (Gasterosteidae) were the three major types of fish taken. Time spent subduing fish and the number of beats delivered to fish were positively correlated with length of fish. More time and a greater number of beats were needed to subdue sticklebacks and sculpins than salmonids of the same size class, possibly because more effort was required to disable the protective spines of sticklebacks and sculpins. Over 50 percent of strikes from perches resulted in captures of prey, while only 20 percent of strikes from a hovering position were successful. Strike success was negatively correlated with the disturb-ance of the water's surface and was lowest when almost dark, highest at dusk, and decreased as light levels increased. On the basis of 19 complete days of field data, kingfishers were observed to consume a mean of 70.2 kcal per day while an energetics model developed by Koplin et al. (1980) predicted 72.3 kcal would be required daily assuming an assimilation efficiency of 0.821. From this model the population of 25 kingfishers wintering on the lower Mad River was predicted to have required 337,925 kcal or 84,481 fish of 4 g each, during an average winter.Thesis (M.S.)--Humboldt State University, 198

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols

    Assessing the potential for unaccounted emissions from bioenergy and the implications for forests: The United States and global

    Get PDF
    Development of the bioenergy sector is being actively pursued in many countries as a means to reduce climate change and fulfill international climate agreements such as the Paris Agreement. Although biomass for energy production (especially wood pellets) can replace carbon-intensive fossil fuels, its net greenhouse gas impact varies, and the production of wood pellets can also lead to intensification in forest harvests and reduction of forest carbon stocks. Additionally, under specific conditions, emissions associated with imported biomass feedstocks may be omitted from national accounts, due to incompatibilities in accounting approaches. We assessed the risks and potential scale of emissions omitted from accounts (EOA) among key trading regions, focusing on the demand for wood pellets under different levels of climate mitigation targets. Our results suggest that the global production of wood pellets would grow from 38.9 to 120 Mton/year between 2019 and 2050 in a scenario that limits global mean temperature increase to 1.5°C above pre-industrial levels. A large portion of this occurs in North America (36.8 Mton/year by 2050), Europe (47.6 Mton/year by 2050), and Asia (23.3 Mton/year by 2050). We estimate that in a 1.5°C scenario, global EOA associated with international trade of wood pellets has the potential to reach 23.81 MtCO2eq/year by 2030 and 69.52 MtCO2eq/year in 2050. Emissions resulting from European biomass energy production, based on wood pellet imports from the United States, may reach 11.68 MtCO2eq/year by 2030 and 33.57 MtCO2eq/year in 2050. The production of wood pellet feedstocks may also present a substantial carbon price arbitrage opportunity for bioenergy producers through a conjunction of two distinct GHG accounting rules. If this opportunity is realized, it could accelerate the growth of the bioenergy industry to levels that harm forests’ function as a carbon sink and omit actual emissions in national and global accounting frameworks

    Downscaling of Long-Term Global Scenarios to Regions with a Forest Sector Model

    Get PDF
    Research Highlights: Long-term global scenarios give insights on how social and economic developments and international agreements may impact land use, trade, product markets, and carbon balances. They form a valuable basis for forming national forest policies. Many aspects related to long-term management of forests and consequences for biodiversity and ecosystem services can only be addressed at regional and landscape levels. In order to be attended to in the policy process, there is a need for a method that downscales national scenarios to these finer levels. Background and Objectives: Regional framework conditions depend on management activities in the country as a whole. The aim of this study is to evaluate the use of a forest sector model (FSM) as a method for downscaling national scenarios results to regional level. The national FSM takes the global scenario data (e.g., harvest level and market prices over time) and solves the national problem. The result for the region of interest is taken as framework conditions for the regional study. Materials and Methods: Two different specifications are tested. One lets product volumes and prices represent endogenous variables in the FSM model. The other takes volumes and prices from the global scenario as exogenous parameters. The first specification attains a maximum net social payoff whereas the second specification means that net present value is maximized under a harvest constraint. Results: The maximum net social payoff specification conforms better to economic factors than the maximum net present value specification but could give national harvest volume trajectories that deviates from what is derived from the global model. This means that regional harvest activity can deviate considerably from the national average, attesting to the benefit of the use of the FSM-based metho

    Downscaling of Long-Term Global Scenarios to Regions with a Forest Sector Model

    Get PDF
    Research Highlights: Long-term global scenarios give insights on how social and economic developments and international agreements may impact land use, trade, product markets, and carbon balances. They form a valuable basis for forming national forest policies. Many aspects related to long-term management of forests and consequences for biodiversity and ecosystem services can only be addressed at regional and landscape levels. In order to be attended to in the policy process, there is a need for a method that downscales national scenarios to these finer levels. Background and Objectives: Regional framework conditions depend on management activities in the country as a whole. The aim of this study is to evaluate the use of a forest sector model (FSM) as a method for downscaling national scenarios results to regional level. The national FSM takes the global scenario data (e.g., harvest level and market prices over time) and solves the national problem. The result for the region of interest is taken as framework conditions for the regional study. Materials and Methods: Two different specifications are tested. One lets product volumes and prices represent endogenous variables in the FSM model. The other takes volumes and prices from the global scenario as exogenous parameters. The first specification attains a maximum net social payoff whereas the second specification means that net present value is maximized under a harvest constraint. Results: The maximum net social payoff specification conforms better to economic factors than the maximum net present value specification but could give national harvest volume trajectories that deviates from what is derived from the global model. This means that regional harvest activity can deviate considerably from the national average, attesting to the benefit of the use of the FSM-based metho

    Modeling stand-level mortality based on maximum stem number and seasonal temperature

    Get PDF
    Mortality is a key process in forest stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number per ha (MSN) over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba’s theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper boundary of observed stem numbers per ha. The developed mortality model with our results showed a high degree of reliability (R2 = 0.55–0.81) and no obvious dependencies or patterns in residuals. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not for oak species (Chinese cork oak and Mongolian oak). Based on the linear regression analysis of residuals, we found that the mortality of coniferous forests tended to increase with the rising seasonal temperature. This is more evident during winter and spring months. Conversely, oak mortality did not significantly vary with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and is expected to contribute to forest management decisions

    Increasing global wood demand will risk forest sustainability

    Get PDF
    The European Union aims to be climate neutral by 2050, driving ambitious mitigation efforts. Our study investigates how climate and bioeconomy policies impact biodiversity in Sweden. Using GLOBIOM Model, we project the wood demand under three policy scenarios: Current policy, Bioenergy and Bioeconomy. Focal biodiversity indicators are mean deadwood volume, area of old forest, area of old forest rich in broadleaves and mean age of standing trees. Forest dynamics are simulated using Heureka-Planwise. We identify management strategies balancing economic objectives with biodiversity, employing both intensive and extensive approaches. Mean deadwood volume increased substantially in set-asides in all policy scenarios, while in production landscape, nearly tripling under Current Policy scenario and doubled under Bioenergy and Bioeconomy scenarios. The area of old forest on production land declined drastically, reaching 0.1 million ha in Bioeconomy scenario by 2100. Optimization favored intensive management strategies, particularly Bioenergy extraction in Bioenergy and Bioeconomy scenarios. Under Current policy, both intensive and extensive management strategies were equally dominant. Management strategies like Continuous cover forestry and Unmanaged were the least implemented. Wood demand consistently increased across scenarios, stabilizing under the Current policy scenario after 2040. In the Bioeconomy scenario the demand continued to increase, surpassing supply potential by 2070
    corecore