251 research outputs found
Self-consistent theory of reversible ligand binding to a spherical cell
In this article, we study the kinetics of reversible ligand binding to
receptors on a spherical cell surface using a self-consistent stochastic
theory. Binding, dissociation, diffusion and rebinding of ligands are
incorporated into the theory in a systematic manner. We derive explicitly the
time evolution of the ligand-bound receptor fraction p(t) in various regimes .
Contrary to the commonly accepted view, we find that the well-known
Berg-Purcell scaling for the association rate is modified as a function of
time. Specifically, the effective on-rate changes non-monotonically as a
function of time and equals the intrinsic rate at very early as well as late
times, while being approximately equal to the Berg-Purcell value at
intermediate times. The effective dissociation rate, as it appears in the
binding curve or measured in a dissociation experiment, is strongly modified by
rebinding events and assumes the Berg-Purcell value except at very late times,
where the decay is algebraic and not exponential. In equilibrium, the ligand
concentration everywhere in the solution is the same and equals its spatial
mean, thus ensuring that there is no depletion in the vicinity of the cell.
Implications of our results for binding experiments and numerical simulations
of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure
Where have all the beetles gone? Long‐term study reveals carabid species decline in a nature reserve in Northern Germany
1. The drastic insect decline has received increasing attention in scientific as well as in public media. Long-term studies of insect diversity trends are still rare, even though such studies are highly important to assess extent, drivers and potential consequences of insect loss in ecosystems.
2. To gain insights into carabid diversity trends of ancient and sustainably managed woodlands, we analysed data of carabid beetles from a trapping study that has been run for 24 years in an old nature reserve of Northern Germany, the Luneburg Heath. We examined temporal changes in several diversity measures € (e.g. biomass, species richness, functional diversity and phylogenetic diversity) and tested diverse species traits as predictor variables for species occurrence.
3. In contrast to recently published long-term studies of insect diversity, we did not observe a decline in biomass, but in species richness and phylogenetic diversity in carabids at our study site. Additionally, hibernation stage predicted the occurrence probability of carabids: Species hibernating as imagines or both imagines and larvae and breeding in spring showed strongest declines.
4. We assume the detected trends to be the result of external effects such as climate change and the application of pesticides in the surrounding. Our results suggest that the drivers for the insect decline and the responses are multifaceted. This highlights the importance of long-term studies with identification of the catches to, at best, species level to support the understanding of mechanisms driving changes in insect diversity and abundance
Endothelial Cell Capture of Heparin-Binding Growth Factors under Flow
Circulation is an important delivery method for both natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule's fate, are difficult to interpret using traditional approaches. In this work, we analyzed and predicted growth factor capture under flow using computer modeling and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process was desired. The experimental module consisted of a bioreactor with synthetic endothelial-lined hollow fibers under flow. The physical design of the system was incorporated into the model parameters. The heparin-binding growth factor fibroblast growth factor-2 (FGF-2) was used for both the experiments and simulations. Our computational model was composed of three parts: (1) media flow equations, (2) mass transport equations and (3) cell surface reaction equations. The model is based on the flow and reactions within a single hollow fiber and was scaled linearly by the total number of fibers for comparison with experimental results. Our model predicted, and experiments confirmed, that removal of heparan sulfate (HS) from the system would result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicted a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters were investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that should prove advantageous for biologicals or drug delivery investigations
Static Magnetic Field Therapy: A Critical Review of Treatment Parameters
Static magnetic field (SMF) therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to:(i) summarize SMF research conducted in humans; (ii) critically evaluate reporting quality of SMF dosages and treatment parameters and (iii) propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61%) of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial
A regulatory pathway model of neuropsychological disruption in Havana syndrome
IntroductionIn 2016 diplomatic personnel serving in Havana, Cuba, began reporting audible sensory phenomena paired with onset of complex and persistent neurological symptoms consistent with brain injury. The etiology of these Anomalous Health Incidents (AHI) and subsequent symptoms remains unknown. This report investigates putative exposure-symptom pathology by assembling a network model of published bio-behavioral pathways and assessing how dysregulation of such pathways might explain loss of function in these subjects using data available in the published literature. Given similarities in presentation with mild traumatic brain injury (mTBI), we used the latter as a clinically relevant means of evaluating if the neuropsychological profiles observed in Havana Syndrome Havana Syndrome might be explained at least in part by a dysregulation of neurotransmission, neuro-inflammation, or both.MethodAutomated text-mining of >9,000 publications produced a network consisting of 273 documented regulatory interactions linking 29 neuro-chemical markers with 9 neuropsychological constructs from the Brief Mood Survey, PTSD Checklist, and the Frontal Systems Behavior Scale. Analysis of information flow through this network produced a set of regulatory rules reconciling to within a 6% departure known mechanistic pathways with neuropsychological profiles in N = 6 subjects.ResultsPredicted expression of neuro-chemical markers that jointly satisfy documented pathways and observed symptom profiles display characteristically elevated IL-1B, IL-10, NGF, and norepinephrine levels in the context of depressed BDNF, GDNF, IGF1, and glutamate expression (FDR < 5%). Elevations in CRH and IL-6 were also predicted unanimously across all subjects. Furthermore, simulations of neurological regulatory dynamics reveal subjects do not appear to be “locked in” persistent illness but rather appear to be engaged in a slow recovery trajectory.DiscussionThis computational analysis of measured neuropsychological symptoms in Havana-based diplomats proposes that these AHI symptoms may be supported in part by disruption of known neuroimmune and neurotransmission regulatory mechanisms also associated with mTBI
Quantitative 3D Characterization of Solidification Structure and Defect Evolution in Al Alloys
In-Situ and Real-Time Analysis of the Formation of Strains and Microstructure Defects during Solidification of Al-3.5 Wt Pct Ni Alloys
Avaliação da infiltração marginal de materiais restauradores adesivos em dentes decíduos
Consequences of enamel preparation with sodium hypochlorite, polyacrylic and phosphoric acids for the bonding of brackets with resin-modified glass ionomer cements
Optimizing recombinant protein expression via automated induction profiling in microtiter plates at different temperatures
- …
