2,054 research outputs found

    USING CALLING ACTIVITY TO PREDICT CALLING ACTIVITY: A CASE STUDY WITH THE ENDANGERED HOUSTON TOAD (BUFO [ANAXYRUS] HOUSTONENSIS)

    Get PDF
    Understanding anuran calling activity patterns is important for maximizing efficiency and value of call survey data collection and analyses. Previous studies have primarily focused on identifying and quantifying abiotic variables that influence anuran calling activity, and investigating relationships between calling activity and population estimates. In this study we investigated the use of a predictor pond approach to guide call survey effort. In this approach, calling activity at a subset of breeding sites (e.g., ponds) is used as a predictor of calling activity at additional breeding sites, with the goal being to minimize sampling effort while simultaneously maximizing sampling efficiency. We explored the efficiency of this approach using call survey data collected on the endangered Houston Toad (Bufo [Anaxyrus] houstonensis) at 15 known breeding ponds over 9 survey years. We found that if calling activity at 3 predictor ponds was used to decide if additional call surveys would occur at the remaining 12 ponds, we would have hypothetically correctly assumed calling activity was not occurring at non-predictor ponds on 92.1% of survey nights, and we would have hypothetically detected 93.9% of the total number of detected individuals over the 9 survey years. We found the predictor pond approach performed well in our case study, and believe it could be a valuable tool for many anuran monitoring programs

    Cavity Optomechanical Magnetometer

    Get PDF
    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation

    Model of a microtoroidal magnetometer

    Get PDF
    We present a model of a cavity optomechanical magnetic field sensor based on a microtoroidal resonator. The magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. According to our theoretical model sensitivities of up to 750 fT/√ Hz may be possible. The simultaneous presence of high-quality mechanical and optical resonances in microtoroids greatly enhances both the response to the magnetic field and the measurement sensitivity

    In-trap conversion electron spectroscopy

    Get PDF
    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future

    Sensitivity of cavity optomechanical field sensors

    Get PDF
    This article presents a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying strain across the sensor. The effect of this strain is accounted for by separating the mechanical motion of the sensor into eigenmodes, each modeled by a simple harmonic oscillator. The force induced on each oscillator can then be determined from an overlap integral between strain and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected

    Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars

    Full text link
    The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (~ 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts cause the so-called Forbush decrease, which can be de- tected as a reduction of galactic cosmic rays measured on-ground. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model

    Tracking and Validating ICMEs Propagating Toward Mars Using STEREO Heliospheric Imagers Combined With Forbush Decreases Detected by MSL/RAD

    Full text link
    The Radiation Assessment Detector (RAD) instrument onboard the Mars Science Laboratory (MSL) mission's Curiosity rover has been measuring galactic cosmic rays (GCR) as well as solar energetic particles (SEP) on the surface of Mars for more than 6 years since its landing in August 2012. The observations include a large number of Forbush decreases (FD) caused by interplanetary coronal mass ejections (ICMEs) and/or their associated shocks shielding away part of the GCR particles with their turbulent and enhanced magnetic fields while passing Mars. This study combines MSL/RAD FD measurements and remote tracking of ICMEs using the Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) telescopes in a statistical study for the first time. The large data set collected by HI makes it possible to analyze 149 ICMEs propagating toward MSL both during its 8-month cruise phase and after its landing on Mars. We link 45 of the events observed at STEREO-HI to their corresponding FDs at MSL/RAD and study the accuracy of the ICME arrival time at Mars predicted from HI data using different methods. The mean differences between the predicted arrival times and those observed using FDs range from -11 to 5 hr for the different methods, with standard deviations between 17 and 20 hr. These values for predictions at Mars are very similar compared to other locations closer to the Sun and also comparable to the precision of some other modeling approaches

    Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas

    Get PDF
    Background and aims: We tested the hypothesis that the actual or predicted consequences of mutations in the cystic fibrosis transmembrane regulator gene correlate with the pancreatic phenotype and with measures of quantitative exocrine pancreatic function. Methods: We assessed 742 patients with cystic fibrosis for whom genotype and clinical data were available. At diagnosis, 610 were pancreatic insufficient, 110 were pancreatic sufficient, and 22 pancreatic sufficient patients progressed to pancreatic insufficiency after diagnosis. Results: We identified mutations on both alleles in 633 patients (85.3%), on one allele in 95 (12.8%), and on neither allele in 14 (1.9%). Seventy six different mutations were identified. The most common mutation was ΔF508 (71.3%) followed by G551D (2.9%), G542X (2.3%), 621+1G→T (1.2%), and W1282X (1.2%). Patients were categorized into five classes according to the predicted functional consequences of each mutation. Over 95% of patients with severe class I, II, and III mutations were pancreatic insufficient or progressed to pancreatic insufficiency. In contrast, patients with mild class IV and V mutations were consistently pancreatic sufficient. In all but four cases each genotype correlated exclusively with the pancreatic phenotype. Quantitative data of acinar and ductular secretion were available in 93 patients. Patients with mutations belonging to classes I, II, and III had greatly reduced acinar and ductular function compared with those with class IV or V mutations. Conclusion: The predicted or known functional consequences of specific mutant alleles correlate with the severity of pancreatic disease in cystic fibrosis.published_or_final_versio

    Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Imaging

    Get PDF
    The purpose of this study was to define guidelines for endometrial cancer staging with MRI. The technique included critical review and expert consensus of MRI protocols by the female imaging subcommittee of the European Society of Urogenital Radiology, from ten European institutions, and published literature between 1999 and 2008. The results indicated that high field MRI should include at least two T2-weighted sequences in sagittal, axial oblique or coronal oblique orientation (short and long axis of the uterine body) of the pelvic content. High-resolution post-contrast images acquired at 2min ± 30 s after intravenous contrast injection are suggested to be optimal for the diagnosis of myometrial invasion. If cervical invasion is suspected, additional slice orientation perpendicular to the axis of the endocervical channel is recommended. Due to the limited sensitivity of MRI to detect lymph node metastasis without lymph node-specific contrast agents, retroperitoneal lymph node screening with pre-contrast sequences up to the level of the kidneys is optional. The likelihood of lymph node invasion and the need for staging lymphadenectomy are also indicated by high-grade histology at endometrial tissue sampling and by deep myometrial or cervical invasion detected by MRI. In conclusion, expert consensus and literature review lead to an optimized MRI protocol to stage endometrial cance
    corecore