1,664 research outputs found
Exchange Gate on the Qudit Space and Fock Space
We construct the exchange gate with small elementary gates on the space of
qudits, which consist of three controlled shift gates and three "reverse"
gates. This is a natural extension of the qubit case.
We also consider a similar subject on the Fock space, but in this case we
meet with some different situation. However we can construct the exchange gate
by making use of generalized coherent operator based on the Lie algebra su(2)
which is a well--known method in Quantum Optics. We moreover make a brief
comment on "imperfect clone".Comment: Latex File, 12 pages. I could solve the problems in Sec. 3 in the
preceding manuscript, so many corrections including the title were mad
SBML models and MathSBML
MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation
Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems
The many-body Monte Carlo method is used to evaluate the frequency dependent
conductivity and the average mobility of a system of hopping charges,
electronic or ionic on a one-dimensional chain or channel of finite length. Two
cases are considered: the chain is connected to electrodes and in the other
case the chain is confined giving zero dc conduction. The concentration of
charge is varied using a gate electrode. At low temperatures and with the
presence of an injection barrier, the mobility is an oscillatory function of
density. This is due to the phenomenon of charge density pinning. Mobility
changes occur due to the co-operative pinning and unpinning of the
distribution. At high temperatures, we find that the electron-electron
interaction reduces the mobility monotonically with density, but perhaps not as
much as one might intuitively expect because the path summation favour the
in-phase contributions to the mobility, i.e. the sequential paths in which the
carriers have to wait for the one in front to exit and so on. The carrier
interactions produce a frequency dependent mobility which is of the same order
as the change in the dc mobility with density, i.e. it is a comparably weak
effect. However, when combined with an injection barrier or intrinsic disorder,
the interactions reduce the free volume and amplify disorder by making it
non-local and this can explain the too early onset of frequency dependence in
the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review
Software that goes with the flow in systems biology
A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists
The Nondeterministic Waiting Time Algorithm: A Review
We present briefly the Nondeterministic Waiting Time algorithm. Our technique
for the simulation of biochemical reaction networks has the ability to mimic
the Gillespie Algorithm for some networks and solutions to ordinary
differential equations for other networks, depending on the rules of the
system, the kinetic rates and numbers of molecules. We provide a full
description of the algorithm as well as specifics on its implementation. Some
results for two well-known models are reported. We have used the algorithm to
explore Fas-mediated apoptosis models in cancerous and HIV-1 infected T cells
Representations and Properties of Generalized Statistics, Coherent States and Robertson Uncertainty Relations
The generalization of statistics, including bosonic and fermionic
sectors, is performed by means of the so-called Jacobson generators. The
corresponding Fock spaces are constructed. The Bargmann representations are
also considered. For the bosonic statistics, two inequivalent Bargmann
realizations are developed. The first (resp. second) realization induces, in a
natural way, coherent states recognized as Gazeau-Klauder (resp.
Klauder-Perelomov) ones. In the fermionic case, the Bargamnn realization leads
to the Klauder-Perelomov coherent states. For each considered realization, the
inner product of two analytic functions is defined in respect to a measure
explicitly computed. The Jacobson generators are realized as differential
operators. It is shown that the obtained coherent states minimize the
Robertson-Schr\"odinger uncertainty relation.Comment: 16 pages, published in JP
Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4
Various physical quantities are measured and analysed for the Cu-substituted
thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the
substituted Cu enhances the thermoelectric power, while it does not increase
the resistivity significantly. The susceptibility and the electron
specific-heat are substantially decreased with increasing x, which implies that
the substituted Cu decreases the effective-mass enhancement. Through a
quantitative comparison with the heavy fermion compounds and the valence
fluctuation systems, we have found that the Cu substitution effectively
increases the coupling between the conduction electron and the magnetic
fluctuation. The Cu substitution induces a phase transition at 22 K that is
very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Photon generation by laser-Compton scattering at the KEK-ATF
We performed a photon generation experiment by laser-Compton scattering at
the KEK-ATF, aiming to develop a Compton based polarized positron source for
linear colliders. In the experiment, laser pulses with a 357 MHz repetition
rate were accumulated and their power was enhanced by up to 250 times in the
Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser
pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while
maintaining the laser pulse accumulation in the cavity. As a result, we
observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which
corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM
- …
