1,437 research outputs found
Corrosion-protective coatings from electrically conducting polymers
In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications
On the fundamental representation of Borcherds algebras with one imaginary simple root
Borcherds algebras represent a new class of Lie algebras which have almost
all the properties that ordinary Kac-Moody algebras have, and the only major
difference is that these generalized Kac-Moody algebras are allowed to have
imaginary simple roots. The simplest nontrivial examples one can think of are
those where one adds ``by hand'' one imaginary simple root to an ordinary
Kac-Moody algebra. We study the fundamental representation of this class of
examples and prove that an irreducible module is given by the full tensor
algebra over some integrable highest weight module of the underlying Kac-Moody
algebra. We also comment on possible realizations of these Lie algebras in
physics as symmetry algebras in quantum field theory.Comment: 8 page
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Realizability of Polytopes as a Low Rank Matrix Completion Problem
This article gives necessary and sufficient conditions for a relation to be
the containment relation between the facets and vertices of a polytope. Also
given here, are a set of matrices parameterizing the linear moduli space and
another set parameterizing the projective moduli space of a combinatorial
polytope
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
Transmission of UV light with high beam quality and pointing stability is
desirable for many experiments in atomic, molecular and optical physics. In
particular, laser cooling and coherent manipulation of trapped ions with
transitions in the UV require stable, single-mode light delivery. Transmitting
even ~2 mW CW light at 280 nm through silica solid-core fibers has previously
been found to cause transmission degradation after just a few hours due to
optical damage. We show that photonic crystal fiber of the kagom\'e type can be
used for effectively single-mode transmission with acceptable loss and bending
sensitivity. No transmission degradation was observed even after >100 hours of
operation with 15 mW CW input power. In addition it is shown that
implementation of the fiber in a trapped ion experiment significantly increases
the coherence times of the internal state transfer due to an increase in beam
pointing stability
Is the classical Bukhvostov-Lipatov model integrable? A Painlev\'e analysis
In this work we apply the Weiss, Tabor and Carnevale integrability criterion
(Painlev\'e analysis) to the classical version of the two dimensional
Bukhvostov-Lipatov model. We are led to the conclusion that the model is not
integrable classically, except at a trivial point where the theory can be
described in terms of two uncoupled sine-Gordon models
Signatures of partition functions and their complexity reduction through the KP II equation
A statistical amoeba arises from a real-valued partition function when the
positivity condition for pre-exponential terms is relaxed, and families of
signatures are taken into account. This notion lets us explore special types of
constraints when we focus on those signatures that preserve particular
properties. Specifically, we look at sums of determinantal type, and main
attention is paid to a distinguished class of soliton solutions of the
Kadomtsev-Petviashvili (KP) II equation. A characterization of the signatures
preserving the determinantal form, as well as the signatures compatible with
the KP II equation, is provided: both of them are reduced to choices of signs
for columns and rows of a coefficient matrix, and they satisfy the whole KP
hierarchy. Interpretations in term of information-theoretic properties,
geometric characteristics, and the relation with tropical limits are discussed.Comment: 42 pages, 11 figures. Section 7.1 has been added, the organization of
the paper has been change
Noncommutative Geometry and Spacetime Gauge Symmetries of String Theory
We illustrate the various ways in which the algebraic framework of
noncommutative geometry naturally captures the short-distance spacetime
properties of string theory. We describe the noncommutative spacetime
constructed from a vertex operator algebra and show that its algebraic
properties bear a striking resemblence to some structures appearing in M
Theory, such as the noncommutative torus. We classify the inner automorphisms
of the space and show how they naturally imply the conventional duality
symmetries of the quantum geometry of spacetime. We examine the problem of
constructing a universal gauge group which overlies all of the dynamical
symmetries of the string spacetime. We also describe some aspects of toroidal
compactifications with a light-like coordinate and show how certain generalized
Kac-Moody symmetries, such as the Monster sporadic group, arise as gauge
symmetries of the resulting spacetime and of superstring theories.Comment: 17 pages LaTeX; Invited paper to appear in the special issue of the
Journal of Chaos, Solitons and Fractals on "Superstrings, M, F, S, ...
Theory" (M.S. El Naschie and C. Castro, editors
Small grid embeddings of 3-polytopes
We introduce an algorithm that embeds a given 3-connected planar graph as a
convex 3-polytope with integer coordinates. The size of the coordinates is
bounded by . If the graph contains a triangle we can
bound the integer coordinates by . If the graph contains a
quadrilateral we can bound the integer coordinates by . The
crucial part of the algorithm is to find a convex plane embedding whose edges
can be weighted such that the sum of the weighted edges, seen as vectors,
cancel at every point. It is well known that this can be guaranteed for the
interior vertices by applying a technique of Tutte. We show how to extend
Tutte's ideas to construct a plane embedding where the weighted vector sums
cancel also on the vertices of the boundary face
Intersecting Solitons, Amoeba and Tropical Geometry
We study generic intersection (or web) of vortices with instantons inside,
which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1
supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1}
\times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the
case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can
be beautifully understood in a mathematical framework of amoeba and tropical
geometry, and we propose a dictionary relating solitons and gauge theory to
amoeba and tropical geometry. A projective shape of vortex sheets is described
by the amoeba. Vortex charge density is uniformly distributed among vortex
sheets, and negative contribution to instanton charge density is understood as
the complex Monge-Ampere measure with respect to a plurisubharmonic function on
(C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin
function. The general form of the Kahler potential and the asymptotic metric of
the moduli space of a vortex loop are obtained as a by-product. Our discussion
works generally in non-Abelian gauge theories, which suggests a non-Abelian
generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure
- …
