487 research outputs found
Intrinsic peculiarities of real material realizations of a spin-1/2 kagome lattice
Spin-1/2 magnets with kagome geometry, being for years a generic object of
theoretical investigations, have few real material realizations. Recently, a
DFT-based microscopic model for two such materials, kapellasite Cu3Zn(OH)6Cl2
and haydeeite Cu3Mg(OH)6Cl2, was presented [O. Janson, J. Richter and H.
Rosner, arXiv:0806.1592]. Here, we focus on the intrinsic properties of real
spin-1/2 kagome materials having influence on the magnetic ground state and the
low-temperature excitations. We find that the values of exchange integrals are
strongly dependent on O--H distance inside the hydroxyl groups, present in most
spin-1/2 kagome compounds up to date. Besides the original kagome model,
considering only the nearest neighbour exchange, we emphasize the crucial role
of the exchange along the diagonals of the kagome lattice.Comment: 4 pages, 4 figures. A paper for the proceedings of the HFM 2008
conferenc
Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO
We present a numerical study of thermodynamical properties of dimerized
frustrated Heisenberg chains down to extremely low temperatures with
applications to CuGeO. A variant of the finite temperature density matrix
renormalization group (DMRG) allows the study of the dimerized phase previously
unaccessible to ab initio calculations. We investigate static dimerized systems
as well as the instability of the quantum chain towards lattice dimerization.
The crossover from a quadratic response in the free energy to the distortion
field at finite temperature to nonanalytic behavior at zero temperature is
studied quantitatively. Various physical quantities are derived and compared
with experimental data for CuGeO such as magnetic dimerization, critical
temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer
Deep saline aquifers are promising geological reservoirs for CO2
sequestration if they do not leak. The absence of leakage is provided by the
caprock integrity. However, CO2 injection operations may change the
geomechanical stresses and cause fracturing of the caprock. We present a model
for the propagation of a fracture in the caprock driven by the outflow of fluid
from a low-permeability aquifer. We show that to describe the fracture
propagation, it is necessary to solve the pressure diffusion problem in the
aquifer. We solve the problem numerically for the two-dimensional domain and
show that, after a relatively short time, the solution is close to that of
one-dimensional problem, which can be solved analytically. We use the relations
derived in the hydraulic fracture literature to relate the the width of the
fracture to its length and the flux into it, which allows us to obtain an
analytical expression for the fracture length as a function of time. Using
these results we predict the propagation of a hypothetical fracture at the In
Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also
show that the hydrostatic and geostatic effects cause the increase of the
driving force for the fracture propagation and, therefore, our solution serves
as an estimate from below. Numerical estimates show that if a fracture appears,
it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO
The microscopic description of the spin-Peierls transition in pure and doped
CuGeO_3 is developed taking into account realistic details of crystal
structure. It it shown that the presence of side-groups (here Ge) strongly
influences superexchange along Cu-O-Cu path, making it antiferromagnetic.
Nearest-neighbour and next-nearest neighbour exchange constants and
are calculated. Si doping effectively segments the CuO_2-chains
leading to or even slightly ferromagnetic. Strong
sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be
responsible for the spin-Peierls transition itself (``bond-bending mechanism''
of the transition). The nature of excitations in the isolated and coupled
spin-Peierls chains is studied and it is shown that topological excitations
(solitons) play crucial role. Such solitons appear in particular in doped
systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the
phase diagram.Comment: 7 pages, revtex, 7 Postscript figure
Triplet Dispersion in CuGeO_3: Perturbative Analysis
We reconsider the 2d model for CuGeO_3 introduced previously (Phys. Rev.
Lett. 79, 163 (1997)). Using a computer aided perturbation method based on flow
equations we expand the 1-triplet dispersion up to 10th order. The expansion is
provided as a polynom in the model parameters. The latter are fixed by fitting
the theoretical result to experimental data obtained by INS. For a dimerization
delta = 0.08(1) we find an excellent agreement with experiment. This value is
at least 2 to 3 times higher than values deduced previously from 1d chain
approaches. For the intrachain frustration alpha_0 we find a smaller value of
0.25(3). The existence of interchain frustration conjectured previously is
confirmed by the analysis of temperature dependent susceptibility.Comment: 8 pages, 10 figures, submitted to Phys. Rev.
Strong anisotropy of superexchange in the copper-oxygen chains of La_{14-x}Ca_{x}Cu_{24}O_{41}
Electron spin resonance data of Cu^{2+} ions in La_{14-x}Ca_{x}Cu_{24}O_{41}
crystals (x=9,11,12) reveal a very large width of the resonance line in the
paramagnetic state. This signals an unusually strong anisotropy of ~10% of the
isotropic Heisenberg superexchange in the Cu-O chains of this compound. The
strong anisotropy can be explained by the specific geometry of two symmetrical
90 degree Cu-O-Cu bonds, which boosts the importance of orbital degrees of
freedom. Our data show the apparent limitations of the applicability of an
isotropic Heisenberg model to the low dimensional cuprates.Comment: 14 pages, 3 figures included, to be published in Phys. Rev. Let
Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates
We present a detailed calculation of the magnetic couplings between
nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing
geometry, ubiquitous in many cuprates. In this geometry, the interaction
between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu
angle is close to 90 degrees. The derivation is based on a perturbation
expansion of a general Hubbard Hamiltonian, and produces numerical estimates
for the various magnetic energies. In particular we find the dependence of the
anisotropy energies on the angular deviation away from the 90 degrees geometry
of the Cu-O-Cu bonds. Our results are required for the correct analysis of the
magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure
The microscopic spin-phonon coupling constants in CuGeO_3
Using RPA results, mean field theory, and refined data for the polarization
vectors we determine the coupling constants of the four Peierls-active phonon
modes to the spin chains of CuGeO_3. We then derive the values of the coupling
of the spin system to the linear ionic displacements, the bond lengths and the
angles between bonds. Our values are consistent with microscopic theories and
various experimental results. We discuss the applicability of static approaches
to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is
explained. We give the values of the coupling constants in an effective
one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press
Magnetic Excitations in quasi two-dimensional Spin-Peierls Systems
A study is presented of a two-dimensional frustrated and dimerized quantum
spin-system which models the effect of inter-chain coupling in a spin-Peierls
compound. Employing a bond-boson method to account for quantum disorder in the
ground state the elementary excitations are evaluated in terms of gapful
triplet modes. Results for the ground state energy and the spin gap are
discussed. The triplet dispersion is found to be in excellent agreement with
inelastic neutron scattering data in the dimerized phase of the spin-Peierls
compound CuGeO_3. Moreover, consistent with these neutron scattering
experiments, the low-temperature dynamic structure factor exhibits a
high-energy continuum split off from the elementary triplet mode.Comment: 8 pages, Revtex, 8 eps-figure
Field-induced structural evolution in the spin-Peierls compound CuGeO: high-field ESR study
The dimerized-incommensurate phase transition in the spin-Peierls compound
CuGeO is probed using multifrequency high-resolution electron spin
resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced
development of the soliton-like incommensurate superstructure is clearly
indicated as a pronounced increase of the ESR linewidth (magnon
excitations), with a at 13.8 T. The anomaly is
explained in terms of the magnon-soliton scattering, and suggests that the
soliton-like phase exists close to the boundary of the dimerized-incommensurate
phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped
CuGeO are studied. Suppression of the anomaly observed in the
doped samples suggests a collapse of the long-range-ordered soliton states upon
doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.
- …
