708 research outputs found

    Statistics of Extreme Waves in Random Media

    Full text link
    Waves traveling through random media exhibit random focusing that leads to extremely high wave intensities even in the absence of nonlinearities. Although such extreme events are present in a wide variety of physical systems and the statistics of the highest waves is important for their analysis and forecast, it remains poorly understood in particular in the regime where the waves are highest. We suggest a new approach that greatly simplifies the mathematical analysis and calculate the scaling and the distribution of the highest waves valid for a wide range of parameters

    An Examination of Adult Bullying in the K-12 Workplace: Implications for School Leaders

    Get PDF
    The issue of bullying in K-12 schools usually brings images of students to mind, but a recent quantitative study of a sample from K-12 school personnel in Michigan showed that 27.8% of adults in the K-12 workplace consider themselves the target of an adult bully. This study calls for school leadership to recognize and proactively address the issue of workplace bullying in K-12 schools through policy, procedures, training, prevention, enforcement, and positive resolution to provide a safe, non-threatening environment in which to work and learn

    Evolutionary optimization of an experimental apparatus

    Full text link
    In recent decades, cold atom experiments have become increasingly complex. While computers control most parameters, optimization is mostly done manually. This is a time-consuming task for a high-dimensional parameter space with unknown correlations. Here we automate this process using a genetic algorithm based on Differential Evolution. We demonstrate that this algorithm optimizes 21 correlated parameters and that it is robust against local maxima and experimental noise. The algorithm is flexible and easy to implement. Thus, the presented scheme can be applied to a wide range of experimental optimization tasks.Comment: minor revisio

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time τ\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed

    Directed deterministic classical transport: symmetry breaking and beyond

    Full text link
    We consider transport properties of a double delta-kicked system, in a regime where all the symmetries (spatial and temporal) that could prevent directed transport are removed. We analytically investigate the (non trivial) behavior of the classical current and diffusion properties and show that the results are in good agreement with numerical computations. The role of dissipation for a meaningful classical ratchet behavior is also discussed.Comment: 10 pages, 20 figure

    Scaling detection in time series: diffusion entropy analysis

    Full text link
    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy time series, as prototypes of ordinary and anomalus statistics, respectively, and we analyse them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy statistics.Comment: 21 pages,10 figures, 1 tabl

    What determines the spreading of a wave packet?

    Full text link
    The multifractal dimensions D2^mu and D2^psi of the energy spectrum and eigenfunctions, resp., are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved the k-th moment increases as t^(k*beta) with beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D_2^psi - d and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure

    Statistics of resonances and of delay times in quasiperiodic Schr"odinger equations

    Full text link
    We study the statistical distributions of the resonance widths P(Γ){\cal P} (\Gamma), and of delay times P(τ){\cal P} (\tau) in one dimensional quasi-periodic tight-binding systems with one open channel. Both quantities are found to decay algebraically as Γα\Gamma^{-\alpha}, and τγ\tau^{-\gamma} on small and large scales respectively. The exponents α\alpha, and γ\gamma are related to the fractal dimension D0ED_0^E of the spectrum of the closed system as α=1+D0E\alpha=1+D_0^E and γ=2D0E\gamma=2-D_0^E. Our results are verified for the Harper model at the metal-insulator transition and for Fibonacci lattices.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    corecore