1,636 research outputs found

    Chromatic correlations at injection and related ejection problems in separated sector cyclotrons

    Get PDF
    International audienceInjection into a cyclotron, in order to preventemittance and phase spread dilution, requires propercouplings in the matching. One must first introduce aAP/r' associated with an r/AW coupling (through simplecticconditions) ; according to the angle of theaccelerating dees and the choice of harmonic numberthe(r,r') acceptance may also have to be tilted. Allthese effects are investigated in the case of theGANIL SSC's. At extraction corresponding correlationsexist. For a resonant system, extraction may be difficultwhen the energy spread is large because of thelarge coupling induced by resonance. A precessionalextraction which has been studied might in this casebe more efficient. Other ways for making extractioneasier are also considered. Moreover a new method ofphase compression at injection into the SSC is presentlyunder study at GANIL

    A Persistent Disk Wind in GRS 1915+105 with NICER

    Full text link
    The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of NICER, we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depends on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional RMS variability. The trends with count rate and RMS are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.Comment: Accepted for publication in ApJL. Comments welcom

    The 3-53 keV Spectrum of the Quasar 1508+5714: X-rays from z = 4.3

    Full text link
    We present a high-quality X-ray spectrum in the 3--53 keV rest-frame band of the radio-loud quasar 1508+5714, by far the brightest known X-ray source at z > 4. A simple power-law model with an absorption column density equal to the Galactic value in the direction of the source provides an excellent and fully adequate fit to the data; the measured power-law photon index Gamma = 1.42 (+0.13,-0.10). Upper limits to Fe K alpha line emission and Compton-reflection components are derived. We offer evidence for both X-ray and radio variability in this object and provide the first contemporaneous radio spectrum (alpha = -0.25). The data are all consistent with a picture in which the emission from this source is dominated by a relativistically beamed component in both the X-ray and radio bands.Comment: 8 pages, TeX, 2 postscript figures; to appear in ApJ Letter

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    A NICER Discovery of a Low-Frequency Quasi-Periodic Oscillation in the Soft-Intermediate State of MAXI J1535-571

    Full text link
    We present the discovery of a low-frequency 5.7\approx 5.7 Hz quasi-periodic oscillation (QPO) feature in observations of the black hole X-ray binary MAXI J1535-571 in its soft-intermediate state, obtained in September-October 2017 by the Neutron Star Interior Composition Explorer (NICER). The feature is relatively broad (compared to other low-frequency QPOs; quality factor Q2Q\approx 2) and weak (1.9% rms in 3-10 keV), and is accompanied by a weak harmonic and low-amplitude broadband noise. These characteristics identify it as a weak Type A/B QPO, similar to ones previously identified in the soft-intermediate state of the transient black hole X-ray binary XTE J1550-564. The lag-energy spectrum of the QPO shows increasing soft lags towards lower energies, approaching 50 ms at 1 keV (with respect to a 3-10 keV continuum). This large phase shift has similar amplitude but opposite sign to that seen in Rossi X-ray Timing Explorer data for a Type B QPO from the transient black hole X-ray binary GX 339-4. Previous phase-resolved spectroscopy analysis of the Type B QPO in GX 339-4 pointed towards a precessing jet-like corona illuminating the accretion disk as the origin of the QPO signal. We suggest that this QPO in MAXI J1535-571 may have the same origin, with the different lag sign depending on the scale height of the emitting region and the observer inclination angle.Comment: Accepted for publication in ApJ Letter

    Gravitational Lensing of the X-Ray Background by Clusters of Galaxies

    Get PDF
    Gravitational lensing by clusters of galaxies affects the cosmic X-ray background (XRB) by altering the observed density and flux distribution of background X-ray sources. At faint detection flux thresholds, the resolved X-ray sources appear brighter and diluted, while the unresolved component of the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray intensity in the outer halos of clusters might be lower than the sky-averaged XRB, after the subtraction of resolved sources. Detection of the lensing signal with a wide-field X-ray telescope could probe the mass distribution of a cluster out to its virialization boundary. In particular, we show that the lensing signature imprinted on the resolved component of the XRB by the cluster A1689, should be difficult but possible to detect out to 8' at the 2-4 sigma level, after 10^6 seconds of observation with the forthcoming AXAF satellite. The lensing signal is fairly insensitive to the lens redshift in the range 0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the faint end slope of the number-flux relation for unresolved X-ray sources, and can thus help constrain models of the XRB. A search for X-ray arcs or arclets could identify the fraction of all faint sources which originate from extended emission of distant galaxies. The probability for a 3 sigma detection of an arclet which is stretched by a factor of about 3 after a 10^6 seconds observation of A1689 with AXAF, is roughly comparable to the fraction of all background X-ray sources that have an intrinsic size of order 1''.Comment: 41 LaTeX pages, 11 postscript figures, 1 table, in AASTeX v4.0 format. To appear in ApJ, April 1, 1997, Vol. 47

    The Large-Scale Structure of the X-ray Background and its Cosmological Implications

    Get PDF
    A careful analysis of the HEAO1 A2 2-10 keV full-sky map of the X-ray background (XRB) reveals clustering on the scale of several degrees. After removing the contribution due to beam smearing, the intrinsic clustering of the background is found to be consistent with an auto-correlation function of the form (3.6 +- 0.9) x 10^{-4} theta^{-1} where theta is measured in degrees. If current AGN models of the hard XRB are reasonable and the cosmological constant-cold dark matter cosmology is correct, this clustering implies an X-ray bias factor of b_X ~ 2. Combined with the absence of a correlation between the XRB and the cosmic microwave background, this clustering can be used to limit the presence of an integrated Sachs-Wolfe (ISW) effect and thereby to constrain the value of the cosmological constant, Omega_Lambda < 0.60 (95 % C.L.). This constraint is inconsistent with much of the parameter space currently favored by other observations. Finally, we marginally detect the dipole moment of the diffuse XRB and find it to be consistent with the dipole due to our motion with respect to the mean rest frame of the XRB. The limit on the amplitude of any intrinsic dipole is delta I / I < 5 x 10^{-3} at the 95 % C.L. When compared to the local bulk velocity, this limit implies a constraint on the matter density of the universe of Omega_m^{0.6}/b_X(0) > 0.24.Comment: 15 pages, 8 postscript figures, to appear in the Astrophysical Journal. The postscript version appears not to print, so use the PDF versio

    A Composite Seyfert 2 X-ray Spectrum: Implications for the Origin of the Cosmic X-ray Background

    Get PDF
    We present a composite 1-10 keV Seyfert 2 X-ray spectrum, derived from ASCA observations of a distance-limited sample of nearby galaxies. All 29 observed objects were detected. Above ~3 keV, the composite spectrum is inverted, confirming that Seyfert 2 galaxies as a class have the spectral properties necessary to explain the flat shape of the cosmic X-ray background spectrum. Integrating the composite spectrum over redshift, we find that the total emission from Seyfert 2 galaxies, combined with the expected contribution from unabsorbed type 1 objects, provides an excellent match to the spectrum and intensity of the hard X-ray background. The principal uncertainty in this procedure is the cosmic evolution of the Seyfert 2 X-ray luminosity function. Separate composite spectra for objects in our sample with and without polarized broad optical emission lines are also presented.Comment: 11 pages (AASTeX), including 3 figures. Accepted for publication in ApJ Letter
    corecore