454 research outputs found

    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order

    Full text link
    In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einstein's equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory

    Get PDF
    In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non -- Abelean group SU(2) by the Abelean group U(1)3U(1)^3 in the calculations. The mere reason why that substitution was performed at all is that in the non -- Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in \hbar with error control. That is, in particular matrix elements of fractional powers of the volume operator can be computed with extremely high precision for sufficiently large power of \hbar in the \hbar expansion. With this new tool, the non -- Abelean calculation, although technically more involved, is then exactly analogous to the Abelean calculation, thus justifying the Abelean analysis in retrospect. The results of this paper turn AQG into a calculational discipline

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Eigenvalues of the volume operator in loop quantum gravity

    Full text link
    We present a simple method to calculate certain sums of the eigenvalues of the volume operator in loop quantum gravity. We derive the asymptotic distribution of the eigenvalues in the classical limit of very large spins which turns out to be of a very simple form. The results can be useful for example in the statistical approach to quantum gravity.Comment: 12 pages, version accepted in Class. Quantum Gra

    On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation

    Full text link
    Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In this article we review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more specifically, with the Master constraint quantisation for first class constraints. For first class constraints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised) constraints which is always possible locally in phase space. Generically, the correct configuration space path integral measure deviates from the exponential of the Lagrangian action. The corrections are especially severe if the theory suffers from second class secondary constraints. In a companion paper we compute these corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.Comment: 43 page

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Euclidean Theory

    Full text link
    We study the large-j asymptotics of the Euclidean EPRL/FK spin foam amplitude on a 4d simplicial complex with arbitrary number of simplices. We show that for a critical configuration (j_f, g_{ve}, n_{ef}) in general, there exists a partition of the simplicial complex into three regions: Non-degenerate region, Type-A degenerate region and Type-B degenerate region. On both the non-degenerate and Type-A degenerate regions, the critical configuration implies a non-degenerate Euclidean geometry, while on the Type-B degenerate region, the critical configuration implies a vector geometry. Furthermore we can split the Non-degenerate and Type-A regions into sub-complexes according to the sign of Euclidean oriented 4-simplex volume. On each sub-complex, the spin foam amplitude at critical configuration gives a Regge action that contains a sign factor sgn(V_4(v)) of the oriented 4-simplices volume. Therefore the Regge action reproduced here can be viewed as a discretized Palatini action with on-shell connection. The asymptotic formula of the spin foam amplitude is given by a sum of the amplitudes evaluated at all possible critical configurations, which are the products of the amplitudes associated to different type of geometries.Comment: 27 pages, 5 figures, references adde

    The Holst Spin Foam Model via Cubulations

    Full text link
    Spin foam models are an attempt for a covariant, or path integral formulation of canonical loop quantum gravity. The construction of such models usually rely on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional "Regge-like" constraints arising from simplicial triangulations, and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a "cubulation" of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: first, the structure of its amplitudes differs from the standard spin foam models. Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the restriction to simple representations does not automatically occur -- unless one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note: substantial text overlap with arXiv:0911.213
    corecore