454 research outputs found
Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order
In our companion paper we identified a complete set of manifestly
gauge-invariant observables for general relativity. This was possible by
coupling the system of gravity and matter to pressureless dust which plays the
role of a dynamically coupled observer. The evolution of those observables is
governed by a physical Hamiltonian and we derived the corresponding equations
of motion. Linear perturbation theory of those equations of motion around a
general exact solution in terms of manifestly gauge invariant perturbations was
then developed. In this paper we specialise our previous results to an FRW
background which is also a solution of our modified equations of motion. We
then compare the resulting equations with those derived in standard
cosmological perturbation theory (SCPT). We exhibit the precise relation
between our manifestly gauge-invariant perturbations and the linearly
gauge-invariant variables in SCPT. We find that our equations of motion can be
cast into SCPT form plus corrections. These corrections are the trace that the
dust leaves on the system in terms of a conserved energy momentum current
density. It turns out that these corrections decay, in fact, in the late
universe they are negligible whatever the value of the conserved current. We
conclude that the addition of dust which serves as a test observer medium,
while implying modifications of Einstein's equations without dust, leads to
acceptable agreement with known results, while having the advantage that one
now talks about manifestly gauge-invariant, that is measurable, quantities,
which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory
In the two previous papers of this series we defined a new combinatorical
approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that
AQG reproduces the correct infinitesimal dynamics in the semiclassical limit,
provided one incorrectly substitutes the non -- Abelean group SU(2) by the
Abelean group in the calculations. The mere reason why that
substitution was performed at all is that in the non -- Abelean case the volume
operator, pivotal for the definition of the dynamics, is not diagonisable by
analytical methods. This, in contrast to the Abelean case, so far prohibited
semiclassical computations. In this paper we show why this unjustified
substitution nevertheless reproduces the correct physical result: Namely, we
introduce for the first time semiclassical perturbation theory within AQG (and
LQG) which allows to compute expectation values of interesting operators such
as the master constraint as a power series in with error control. That
is, in particular matrix elements of fractional powers of the volume operator
can be computed with extremely high precision for sufficiently large power of
in the expansion. With this new tool, the non -- Abelean
calculation, although technically more involved, is then exactly analogous to
the Abelean calculation, thus justifying the Abelean analysis in retrospect.
The results of this paper turn AQG into a calculational discipline
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Eigenvalues of the volume operator in loop quantum gravity
We present a simple method to calculate certain sums of the eigenvalues of
the volume operator in loop quantum gravity. We derive the asymptotic
distribution of the eigenvalues in the classical limit of very large spins
which turns out to be of a very simple form. The results can be useful for
example in the statistical approach to quantum gravity.Comment: 12 pages, version accepted in Class. Quantum Gra
On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation
Path integral formulations for gauge theories must start from the canonical
formulation in order to obtain the correct measure. A possible avenue to derive
it is to start from the reduced phase space formulation. In this article we
review this rather involved procedure in full generality. Moreover, we
demonstrate that the reduced phase space path integral formulation formally
agrees with the Dirac's operator constraint quantisation and, more
specifically, with the Master constraint quantisation for first class
constraints. For first class constraints with non trivial structure functions
the equivalence can only be established by passing to Abelian(ised) constraints
which is always possible locally in phase space. Generically, the correct
configuration space path integral measure deviates from the exponential of the
Lagrangian action. The corrections are especially severe if the theory suffers
from second class secondary constraints. In a companion paper we compute these
corrections for the Holst and Plebanski formulations of GR on which current
spin foam models are based.Comment: 43 page
A Path-integral for the Master Constraint of Loop Quantum Gravity
In the present paper, we start from the canonical theory of loop quantum
gravity and the master constraint programme. The physical inner product is
expressed by using the group averaging technique for a single self-adjoint
master constraint operator. By the standard technique of skeletonization and
the coherent state path-integral, we derive a path-integral formula from the
group averaging for the master constraint operator. Our derivation in the
present paper suggests there exists a direct link connecting the canonical Loop
quantum gravity with a path-integral quantization or a spin-foam model of
General Relativity.Comment: 19 page
Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Euclidean Theory
We study the large-j asymptotics of the Euclidean EPRL/FK spin foam amplitude
on a 4d simplicial complex with arbitrary number of simplices. We show that for
a critical configuration (j_f, g_{ve}, n_{ef}) in general, there exists a
partition of the simplicial complex into three regions: Non-degenerate region,
Type-A degenerate region and Type-B degenerate region. On both the
non-degenerate and Type-A degenerate regions, the critical configuration
implies a non-degenerate Euclidean geometry, while on the Type-B degenerate
region, the critical configuration implies a vector geometry. Furthermore we
can split the Non-degenerate and Type-A regions into sub-complexes according to
the sign of Euclidean oriented 4-simplex volume. On each sub-complex, the spin
foam amplitude at critical configuration gives a Regge action that contains a
sign factor sgn(V_4(v)) of the oriented 4-simplices volume. Therefore the Regge
action reproduced here can be viewed as a discretized Palatini action with
on-shell connection. The asymptotic formula of the spin foam amplitude is given
by a sum of the amplitudes evaluated at all possible critical configurations,
which are the products of the amplitudes associated to different type of
geometries.Comment: 27 pages, 5 figures, references adde
The Holst Spin Foam Model via Cubulations
Spin foam models are an attempt for a covariant, or path integral formulation
of canonical loop quantum gravity. The construction of such models usually rely
on the Plebanski formulation of general relativity as a constrained BF theory
and is based on the discretization of the action on a simplicial triangulation,
which may be viewed as an ultraviolet regulator. The triangulation dependence
can be removed by means of group field theory techniques, which allows one to
sum over all triangulations. The main tasks for these models are the correct
quantum implementation of the Plebanski constraints, the existence of a
semiclassical sector implementing additional "Regge-like" constraints arising
from simplicial triangulations, and the definition of the physical inner
product of loop quantum gravity via group field theory. Here we propose a new
approach to tackle these issues stemming directly from the Holst action for
general relativity, which is also a proper starting point for canonical loop
quantum gravity. The discretization is performed by means of a "cubulation" of
the manifold rather than a triangulation. We give a direct interpretation of
the resulting spin foam model as a generating functional for the n-point
functions on the physical Hilbert space at finite regulator. This paper focuses
on ideas and tasks to be performed before the model can be taken seriously.
However, our analysis reveals some interesting features of this model: first,
the structure of its amplitudes differs from the standard spin foam models.
Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the
restriction to simple representations does not automatically occur -- unless
one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note:
substantial text overlap with arXiv:0911.213
- …
