1,048 research outputs found
Transport, atom blockade and output coupling in a Tonks-Girardeau gas
Recent experiments have demonstrated how quantum-mechanical impurities can be
created within strongly correlated quantum gases and used to probe the
coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M.
K\"ohl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a
phenomenological model to simulate such an output coupler for a Tonks-Girardeau
gas that shows qualitative agreement with the experimental results for atom
transport and output coupling. Our model allows us to explore nonequilibrium
transport phenomena in ultracold quantum gases and leads us to predict a regime
of atom blockade, where the impurity component becomes localized in the parent
cloud despite the presence of gravity. We show that this provides a stable
mixed-species quantum gas in the strongly correlated limit
The pinning quantum phase transition in a Tonks Girardeau gas: diagnostics by ground state fidelity and the Loschmidt echo
We study the pinning quantum phase transition in a Tonks-Girardeau gas, both
in equilibrium and out-of-equilibrium, using the ground state fidelity and the
Loschmidt echo as diagnostic tools. The ground state fidelity (GSF) will have a
dramatic decrease when the atomic density approaches the commensurate density
of one particle per lattice well. This decrease is a signature of the pinning
transition from the Tonks to the Mott insulating phase. We study the
applicability of the fidelity for diagnosing the pinning transition in
experimentally realistic scenarios. Our results are in excellent agreement with
recent experimental work. In addition, we explore the out of equilibrium
dynamics of the gas following a sudden quench with a lattice potential. We find
all properties of the ground state fidelity are reflected in the Loschmidt echo
dynamics i.e., in the non equilibrium dynamics of the Tonks-Girardeau gas
initiated by a sudden quench of the lattice potential
Ion induced density bubble in a strongly correlated one dimensional gas
We consider a harmonically trapped Tonks-Girardeau gas of impenetrable bosons
in the presence of a single embedded ion, which is assumed to be tightly
confined in a RF trap. In an ultracold ion-atom collision the ion's charge
induces an electric dipole moment in the atoms which leads to an attractive
potential asymptotically. We treat the ion as a static deformation of
the harmonic trap potential and model its short range interaction with the gas
in the framework of quantum defect theory. The molecular bound states of the
ionic potential are not populated due to the lack of any possible relaxation
process in the Tonks-Girardeau regime. Armed with this knowledge we calculate
the density profile of the gas in the presence of a central ionic impurity and
show that a density \textit{bubble} of the order of a micron occurs around the
ion for typical experimental parameters. From these exact results we show that
an ionic impurity in a Tonks gas can be described using a pseudopotential,
allowing for significantly easier treatment.Comment: Accepted for publication in Physical Review A (Rapid Communications)
New spin squeezing and other entanglement tests for two mode systems of identical bosons
For any quantum state representing a physical system of identical particles, the density operator must satisfy the symmetrization principle (SP) and conform to super-selection rules (SSR) that prohibit coherences between differing total particle numbers. Here we consider bi-partitite states for massive bosons, where both the system and sub-systems are modes (or sets of modes) and particle numbers for quantum states are determined from the mode occupancies. Defining non-entangled or separable states as those prepared via local operations (on the sub-systems) and classical communication processes, the sub-system density operators are also required to satisfy the SP and conform to the SSR, in contrast to some other approaches. Whilst in the presence of this additional constraint the previously obtained sufficiency criteria for entanglement, such as the sum of the ˆSx and ˆSy variances for the Schwinger spin components being less than half the mean boson number, and the strong correlation test of |haˆm (bˆ†)ni|2 being greater than h(aˆ†)maˆm (bˆ†)nbˆni(m, n = 1, 2, . . .) are still valid, new tests are obtained in our work. We show that the presence of spin squeezing in at least one of the spin components ˆSx , ˆSy and ˆSz is a sufficient criterion for the presence of entanglement and a simple correlation test can be constructed of |haˆm (bˆ†)ni|2 merely being greater than zero.We show that for the case of relative phase eigenstates, the new spin squeezing test for entanglement is satisfied (for the principle spin operators), whilst the test involving the sum of the ˆSx and ˆSy variances is not. However, another spin squeezing entanglement test for Bose–Einstein condensates involving the variance in ˆSz being less than the sum of the squared mean values for ˆSx and ˆSy divided by the boson number was based on a concept of entanglement inconsistent with the SP, and here we present a revised treatment which again leads to spin squeezing as an entanglement test
Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe
We analyze the non-Markovian character of the dynamics of an open two-level
atom interacting with a gas of ultra-cold fermions. In particular, we discuss
the connection between the phenomena of orthogonality catastrophe and Fermi
edge singularity occurring in such a kind of environment and the memory-keeping
effects which are displayed in the time evolution of the open system
Orthogonality catastrophe as a consequence of qubit embedding in an ultra-cold Fermi gas
We investigate the behaviour of a single qubit coupled to a low-dimensional,
ultra-cold Fermi gas. The scattering between the system and the fermions leads
to the loss of any coherence in the initial state of the qubit and we show that
the exact dynamics of this process is strongly influenced by the effect of the
orthogonality catastrophe within the gas. We highlight the relationship between
the Loschmidt echo and the retarded Green's function - typically used to
formulate the dynamical theory of the catastrophe - and demonstrate that the
effect can be triggered and characterized via local operations on the qubit. We
demonstrate how the expected broadening of the spectral function can be
observed using Ramsey interferometry on the qubit.Comment: 4 and a bit pages, 3 figures. Updated versio
An eccentrically perturbed Tonks-Girardeau gas
We investigate the static and dynamic properties of a Tonks-Girardeau gas in
a harmonic trap with an eccentric -perturbation of variable strength.
For this we first find the analytic eigensolution of the single particle
problem and use this solution to calculate the spatial density and energy
profiles of the many particle gas as a function of the strength and position of
the perturbation. We find that the crystal nature of the Tonks state is
reflected in both the lowest occupation number and momentum distribution of the
gas. As a novel application of our model, we study the time evolution of the
the spatial density after a sudden removal of the perturbation. The dynamics
exhibits collapses and revivals of the original density distribution which
occur in units of the trap frequency. This is reminiscent of the Talbot effect
from classical optics.Comment: Comments and suggestions are welcom
- …
