612 research outputs found
Solution of ordinary differential equations by means of Lie series
Solution of ordinary differential equations by Lie series - Laplace transformation, Weber parabolic-cylinder functions, Helmholtz equations, and applications in physic
Lie series for celestial mechanics, accelerators, satellite stabilization and optimization
Lie series applications to celestial mechanics, accelerators, satellite orbits, and optimizatio
Negative-energy perturbations in cylindrical equilibria with a radial electric field
The impact of an equilibrium radial electric field on negative-energy
perturbations (NEPs) (which are potentially dangerous because they can lead to
either linear or nonlinear explosive instabilities) in cylindrical equilibria
of magnetically confined plasmas is investigated within the framework of
Maxwell-drift kinetic theory. It turns out that for wave vectors with a
non-vanishing component parallel to the magnetic field the conditions for the
existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D.
Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for
the existence of perpendicular NEPs, which are found to be the most important
perturbations, is modified. For ( is the
electrostatic potential) and ( is
the total plasma pressure), a case which is of operational interest in magnetic
confinement systems, the existence of perpendicular NEPs depends on ,
where is the charge of the particle species . In this case the
electric field can reduce the NEPs activity in the edge region of tokamaklike
and stellaratorlike equilibria with identical parabolic pressure profiles, the
reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late
Lifeworld Inc. : and what to do about it
Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in
Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints
Fusion performance in tokamaks hinges critically on the efficacy of the Edge
Transport Barrier (ETB) at suppressing energy losses. The new concept of
fingerprints is introduced to identify the instabilities that cause the
transport losses in the ETB of many of today's experiments, from widely posited
candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic
simulations of experiments, find that each mode type produces characteristic
ratios of transport in the various channels: density, heat and impurities.
This, together with experimental observations of transport in some channel, or,
of the relative size of the driving sources of channels, can identify or
determine the dominant modes causing energy transport. In multiple ELMy H-mode
cases that are examined, these fingerprints indicate that MHD-like modes are
apparently not the dominant agent of energy transport; rather, this role is
played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG)
modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped
Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron
particle losses. Fluctuation frequency can also be an important means of
identification, and is often closely related to the transport fingerprint. The
analytical arguments unify and explain previously disparate experimental
observations on multiple devices, including DIII-D, JET and ASDEX-U, and
detailed simulations of two DIII-D ETBs also demonstrate and corroborate this
Zonal flows and long-distance correlations during the formation of the edge shear layer in the TJ-II stellarator
A theoretical interpretation is given for the observed long-distance
correlations in potential fluctuations in TJ-II. The value of the correlation
increases above the critical point of the transition for the emergence of the
plasma edge shear flow layer. Mean (i.e. surface averaged, zero-frequency)
sheared flows cannot account for the experimental results. A model consisting
of four envelope equations for the fluctuation level, the mean flow shear, the
zonal flow amplitude shear, and the averaged pressure gradient is proposed. It
is shown that the presence of zonal flows is essential to reproduce the main
features of the experimental observations.Comment: 19 pages, 7 figure
Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal
In transport barriers, particularly H-mode edge pedestals, radial scale
lengths can become comparable to the ion orbit width, causing neoclassical
physics to become radially nonlocal. In this work, the resulting changes to
neoclassical flow and current are examined both analytically and numerically.
Steep density gradients are considered, with scale lengths comparable to the
poloidal ion gyroradius, together with strong radial electric fields sufficient
to electrostatically confine the ions. Attention is restricted to relatively
weak ion temperature gradients (but permitting arbitrary electron temperature
gradients), since in this limit a delta-f (small departures from a Maxwellian
distribution) rather than full-f approach is justified. This assumption is in
fact consistent with measured inter-ELM H-Mode edge pedestal density and ion
temperature profiles in many present experiments, and is expected to be
increasingly valid in future lower collisionality experiments. In the numerical
analysis, the distribution function and Rosenbluth potentials are solved for
simultaneously, allowing use of the exact field term in the linearized
Fokker-Planck collision operator. In the pedestal, the parallel and poloidal
flows are found to deviate strongly from the best available conventional
neoclassical prediction, with large poloidal variation of a different form than
in the local theory. These predicted effects may be observable experimentally.
In the local limit, the Sauter bootstrap current formulae appear accurate at
low collisionality, but they can overestimate the bootstrap current near the
plateau regime. In the pedestal ordering, ion contributions to the bootstrap
and Pfirsch-Schluter currents are also modified
- …
