770 research outputs found

    Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV

    Get PDF
    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces \DIII and \DIV five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively

    Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second

    Full text link
    We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.Comment: 7 pages, 4 figure

    Path Integral Solution of Linear Second Order Partial Differential Equations I. The General Construction

    Full text link
    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schr\"{o}dinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette.Comment: 40 page

    Magnetic Transition in the Kondo Lattice System CeRhSn2

    Full text link
    Our resistivity, magnetoresistance, magnetization and specific heat data provide unambiguous evidence that CeRhSn2 is a Kondo lattice system which undergoes magnetic transition below 4 K.Comment: 3 pages text and 5 figure

    Pressure Induced Change in the Magnetic Modulation of CeRhIn5

    Full text link
    We report the results of a high pressure neutron diffraction study of the heavy fermion compound CeRhIn5 down to 1.8 K. CeRhIn5 is known to order magnetically below 3.8 K with an incommensurate structure. The application of hydrostatic pressure up to 8.6 kbar produces no change in the magnetic wave vector qm. At 10 kbar of pressure however, a sudden change in the magnetic structure occurs. Although the magnetic transition temperature remains the same, qm increases from (0.5, 0.5, 0.298) to (0.5, 0.5, 0.396). This change in the magnetic modulation may be the outcome of a change in the electronic character of this material at 10 kbar.Comment: 4 pages, 3 figures include

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page

    The 87-Sr optical frequency standard at PTB

    Full text link
    With 87-Sr atoms confined in a one dimensional optical lattice, the frequency of the optical clock transition 5s^2 ^1S_0 - 5s5p ^3P_0 has been determined to be 429 228 004 229 872.9(5) Hz. The transition frequency was measured with the help of a fs-frequency comb against one of PTB's H-masers whose frequency was measured simultaneously by the PTB Cs fountain clock CSF1. The Sr optical frequency standard contributes with a fractional uncertainty of 1.5 10^-16 to the total uncertainty. The agreement of the measured transition frequency with previous measurements at other institutes supports the status of this transition as secondary representation of the second with the currently smallest uncertainty.Comment: 9 pages, 6 figure

    Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3

    Full text link
    The magnetic ordering temperature of some rare earth based heavy fermion compounds is strongly pressure-dependent and can be completely suppressed at a critical pressure, pc_c, making way for novel correlated electron states close to this quantum critical point. We have studied the clean heavy fermion antiferromagnets CePd2_2Si2_2 and CeIn3_3 in a series of resistivity measurements at high pressures up to 3.2 GPa and down to temperatures in the mK region. In both materials, superconductivity appears in a small window of a few tenths of a GPa on either side of pc_c. We present detailed measurements of the superconducting and magnetic temperature-pressure phase diagram, which indicate that superconductivity in these materials is enhanced, rather than suppressed, by the closeness to magnetic order.Comment: 11 pages, including 9 figure
    corecore