703 research outputs found
Lateral piezoelectric response across ferroelectric domain walls in thin films
In purely c-axis oriented PbZrTiO ferroelectric thin
films, a lateral piezoresponse force microscopy signal is observed at the
position of 180{\deg}domain walls, where the out-of-plane oriented polarization
is reversed. Using electric force microscopy measurements we exclude
electrostatic effects as the origin of this signal. Moreover, our mechanical
simulations of the tip/cantilever system show that the small tilt of the
surface at the domain wall below the tip does not satisfactorily explain the
observed signal either. We thus attribute this lateral piezoresponse at domain
walls to their sideways motion (shear) under the applied electric field. From
simple elastic considerations and the conservation of volume of the unit cell,
we would expect a similar lateral signal more generally in other ferroelectric
materials, and for all types of domain walls in which the out-of-plane
component of the polarization is reversed through the domain wall. We show that
in BiFeO thin films, with 180, 109 and 71{\deg}domain walls, this is indeed
the case.Comment: 31 pages, 10 figures. to appear in J. Appl. Phys. Special topic:
invited papers from the international symposium on piezoresponse force
microscopy and nanoscale phenomena in polar materials. Aveiro - portugal 200
Shear effects in lateral piezoresponse force microscopy at 180 ferroelectric domain walls
In studies using piezoresponse force microscopy, we observe a non-zero
lateral piezoresponse at 180 domain walls in out-of-plane polarized,
c-axis-oriented tetragonal ferroelectric Pb(ZrTi)O
epitaxial thin films. We attribute these observations to a shear strain effect
linked to the sign change of the piezoelectric coefficient through the
domain wall, in agreement with theoretical predictions. We show that in
monoclinically distorted tetragonal BiFeO films, this effect is
superimposed on the lateral piezoresponse due to actual in-plane polarization,
and has to be taken into account in order to correctly interpret the
ferroelectric domain configuration.Comment: 4 pages, 3 figure
The DICE calibration project: design, characterization, and first results
We describe the design, operation, and first results of a photometric
calibration project, called DICE (Direct Illumination Calibration Experiment),
aiming at achieving precise instrumental calibration of optical telescopes. The
heart of DICE is an illumination device composed of 24 narrow-spectrum,
high-intensity, light-emitting diodes (LED) chosen to cover the
ultraviolet-to-near-infrared spectral range. It implements a point-like source
placed at a finite distance from the telescope entrance pupil, yielding a flat
field illumination that covers the entire field of view of the imager. The
purpose of this system is to perform a lightweight routine monitoring of the
imager passbands with a precision better than 5 per-mil on the relative
passband normalisations and about 3{\AA} on the filter cutoff positions. The
light source is calibrated on a spectrophotometric bench. As our fundamental
metrology standard, we use a photodiode calibrated at NIST. The radiant
intensity of each beam is mapped, and spectra are measured for each LED. All
measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C
in order to study the temperature dependence of the system. The photometric and
spectroscopic measurements are combined into a model that predicts the spectral
intensity of the source as a function of temperature. We find that the
calibration beams are stable at the level -- after taking the slight
temperature dependence of the LED emission properties into account. We show
that the spectral intensity of the source can be characterised with a precision
of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5%
depending on how we understand the off-diagonal terms of the error budget
affecting the calibration of the NIST photodiode. With a routine 60-mn
calibration program, the apparatus is able to constrain the passbands at the
targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&
The OPERA experiment Target Tracker
The main task of the Target Tracker detector of the long baseline neutrino
oscillation OPERA experiment is to locate in which of the target elementary
constituents, the lead/emulsion bricks, the neutrino interactions have occurred
and also to give calorimetric information about each event. The technology used
consists in walls of two planes of plastic scintillator strips, one per
transverse direction. Wavelength shifting fibres collect the light signal
emitted by the scintillator strips and guide it to both ends where it is read
by multi-anode photomultiplier tubes. All the elements used in the construction
of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on
neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and
Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding
limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m <
(1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron
emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2
10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino
coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}.
Two-neutrino 2b-decay half-lives have been measured with a high accuracy,
T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2}
Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Stochastic and epistemic uncertainty propagation in LCA
Purpose: When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). Possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone. Methods: Basic knowledge on the probability theory is first recalled, followed by a detailed description of hal-00811827, version 1- 11 Apr 2013 epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible
Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"
Limits on different Majoron decay modes of Mo and Se for neutrinoless double beta decays in the NEMO-3 experiment
The NEMO-3 tracking detector is located in the Fr\'ejus Underground
Laboratory. It was designed to study double beta decay in a number of different
isotopes. Presented here are the experimental half-life limits on the double
beta decay process for the isotopes Mo and Se for different
Majoron emission modes and limits on the effective neutrino-Majoron coupling
constants. In particular, new limits on "ordinary" Majoron (spectral index 1)
decay of Mo ( y) and Se ( y) have been obtained. Corresponding bounds on the
Majoron-neutrino coupling constant are
and .Comment: 23 pages includind 4 figures, to be published in Nuclear Physics
- …
