3,720 research outputs found
Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices
The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging ( fMRI). Streams of visual flashes with irregularly jittered, arrhythmic timing could appear on right or left, with or without a stream of auditory tones that coincided perfectly when present ( highly unlikely by chance), were noncoincident with vision ( different erratic, arrhythmic pattern with same temporal statistics), or an auditory stream appeared alone. fMRI revealed blood oxygenation level-dependent ( BOLD) increases in multisensory superior temporal sulcus (mSTS), contralateral to a visual stream when coincident with an auditory stream, and BOLD decreases for noncoincidence relative to unisensory baselines. Contralateral primary visual cortex and auditory cortex were also affected by audiovisual temporal correspondence or noncorrespondence, as confirmed in individuals. Connectivity analyses indicated enhanced influence from mSTS on primary sensory areas, rather than vice versa, during audiovisual correspondence. Temporal correspondence between auditory and visual streams affects a network of both multisensory ( mSTS) and sensory-specific areas in humans, including even primary visual and auditory cortex, with stronger responses for corresponding and thus related audiovisual inputs
A log-quadratic relation for predicting supermassive black hole masses from the host bulge Sersic index
We reinvestigate the correlation between black hole mass and bulge
concentration. With an increased galaxy sample, updated estimates of galaxy
distances, black hole masses, and Sersic indices `n' - a measure of
concentration - we perform a least-squares regression analysis to obtain a
relation suitable for the purpose of predicting black hole masses in other
galaxies. In addition to the linear relation, log(M_bh) = 7.81(+/-0.08) +
2.69(+/-0.28)[log(n/3)] with epsilon_(intrin)=0.31 dex, we investigated the
possibility of a higher order M_bh-n relation, finding the second order term in
the best-fitting quadratic relation to be inconsistent with a value of zero at
greater than the 99.99% confidence level. The optimal relation is given by
log(M_bh) = 7.98(+/-0.09) + 3.70(+/-0.46)[log(n/3)] -
3.10(+/-0.84)[log(n/3)]^2, with epsilon_(intrin)=0.18 dex and a total absolute
scatter of 0.31 dex. Extrapolating the quadratic relation, it predicts black
holes with masses of ~10^3 M_sun in n=0.5 dwarf elliptical galaxies, compared
to ~10^5 M_sun from the linear relation, and an upper bound on the largest
black hole masses in the local universe, equal to 1.2^{+2.6}_{-0.4}x10^9
M_sun}. In addition, we show that the nuclear star clusters at the centers of
low-luminosity elliptical galaxies follow an extrapolation of the same
quadratic relation. Moreover, we speculate that the merger of two such
nucleated galaxies, accompanied by the merger and runaway collision of their
central star clusters, may result in the late-time formation of some
supermassive black holes. Finally, we predict the existence of, and provide
equations for, a relation between M_bh and the central surface brightness of
the host bulge
Strong asymptotics for Jacobi polynomials with varying nonstandard parameters
Strong asymptotics on the whole complex plane of a sequence of monic Jacobi
polynomials is studied, assuming that with and satisfying , , . The
asymptotic analysis is based on the non-Hermitian orthogonality of these
polynomials, and uses the Deift/Zhou steepest descent analysis for matrix
Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived.
We show that in a generic case the zeros distribute on the set of critical
trajectories of a certain quadratic differential according to the
equilibrium measure on in an external field. However, when either
, or are geometrically close to ,
part of the zeros accumulate along a different trajectory of the same quadratic
differential.Comment: 31 pages, 12 figures. Some references added. To appear in Journal
D'Analyse Mathematiqu
The overdensities of galaxy environments as a function of luminosity and color
We study the mean environments of galaxies in the Sloan Digital Sky Survey as
a function of rest-frame luminosity and color. Overdensities in galaxy number
are estimated in and spheres
centered on galaxies taken from the SDSS spectroscopic sample. We
find that, at constant color, overdensity is independent of luminosity for
galaxies with the blue colors of spirals. This suggests that, at fixed
star-formation history, spiral-galaxy mass is a very weak function of
environment. Overdensity does depend on luminosity for galaxies with the red
colors of early types; both low-luminosity and high-luminosity red galaxies are
found to be in highly overdense regions.Comment: submitted to ApJ
Optical Morphologies of Millijansky Radio Galaxies Observed by HST and in the VLA FIRST Survey
We report on a statistical study of the 51 radio galaxies at the millijansky
flux level from the Faint Images of the Radio Sky at Twenty centimeters,
including their optical morphologies and structure obtained with the Hubble
Space Telescope. Our optical imaging is significantly deeper (~2 mag) than
previous studies with the superior angular resolution of space-based imaging.
We that find 8/51 (16%) of the radio sources have no optically identifiable
counterpart to AB~24 mag. For the remaining 43 sources, only 25 are
sufficiently resolved in the HST images to reliably assign a visual
classification: 15 (60%) are elliptical galaxies, 2 (8%) are late-type spiral
galaxies, 1 (4%) is an S0, 3 (12%) are point-like objects (quasars), and 4
(16%) are merger systems. We find a similar distribution of optical types with
measurements of the Sersic index. The optical magnitude distribution of these
galaxies peaks at I~20.7+-0.5 AB mag, which is ~3 mag brighter than the depth
of our typical HST field and is thus not due to the WFPC2 detection limit. This
supports the luminosity-dependent density evolutionary model, where the
majority of faint radio galaxies typically have L*-optical luminosities and a
median redshift of z~0.8 with a relatively abrupt redshift cut-off at z>~2. We
discuss our results in the context of the evolution of elliptical galaxies and
active galactic nuclei.Comment: 20 pages, 8 figures, 51 galaxy images, and 5 tables. Uses
emulateapj.cls and natbib.sty. Accepted to ApJS. High resolution images are
available upon reques
The Luminosity Function of Low-Redshift Abell Galaxy Clusters
We present the results from a survey of 57 low-redshift Abell galaxy clusters
to study the radial dependence of the luminosity function (LF). The dynamical
radius of each cluster, r200, was estimated from the photometric measurement of
cluster richness, Bgc. The shape of the LFs are found to correlate with radius
such that the faint-end slope, alpha, is generally steeper on the cluster
outskirts. The sum of two Schechter functions provides a more adequate fit to
the composite LFs than a single Schechter function. LFs based on the selection
of red and blue galaxies are bimodal in appearance. The red LFs are generally
flat for -22 < M_Rc < -18, with a radius-dependent steepening of alpha for M_Rc
> -18. The blue LFs contain a larger contribution from faint galaxies than the
red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc
> -21, with a weaker dependence on radius than the red LFs. The dispersion of
M* was determined to be 0.31 mag, which is comparable to the median measurement
uncertainty of 0.38 mag. This suggests that the bright-end of the LF is
universal in shape at the 0.3 mag level. We find that M* is not correlated with
cluster richness when using a common dynamical radius. Also, we find that M* is
weakly correlated with BM-type such that later BM-type clusters have a brighter
M*. A correlation between M* and radius was found for the red and blue galaxies
such that M* fades towards the cluster center.Comment: Accepted for publication in ApJ, 16 pages, 4 tables, 24 figure
The Properties of Poor Groups of Galaxies: III. The Galaxy Luminosity Function
We obtain R-band photometry for galaxies in six nearby poor groups for which
we have spectroscopic data, including 328 new galaxy velocities. For the five
groups with luminous X-ray halos, the composite group galaxy luminosity
function (GLF) is fit adequately by a Schechter function with Mstar = -21.6 +/-
0.4 + 5log h and alpha = -1.3 +/- 0.1. We also find that (1) the ratio of
dwarfs to giants is significantly larger for the five groups with luminous
X-ray halos than for the one marginally X-ray detected group, (2) the composite
GLF for the luminous X-ray groups is consistent in shape with that for rich
clusters, (3) the composite group GLF rises more steeply at the faint end than
that of the field, (4) the shape difference between the field and composite
group GLF's results mostly from the population of non-emission line galaxies,
whose dwarf-to-giant ratio is larger in the denser group environment than in
the field, and (5) the non-emission line dwarfs are more concentrated about the
group center than the non-emission line giants. This last result indicates that
the dwarfs and giants occupy different orbits (i.e., have not mixed completely)
and suggests that the populations formed at a different times. Our results show
that the shape of the GLF varies with environment and that this variation is
due primarily to an increase in the dwarf-to-giant ratio of quiescent galaxies
in higher density regions, at least up to the densities characteristic of X-ray
luminous poor groups. This behavior suggests that, in some environments, dwarfs
are more biased than giants with respect to dark matter. This trend conflicts
with the prediction of standard biased galaxy formation models. (Abridged)Comment: 36 pages, AASLaTeX with 8 figures. Table 1 also available at
http://atropos.as.arizona.edu/aiz/papers/all_grp_lf_ascii.dat.final . To
appear in Ap
Galaxy And Mass Assembly (GAMA)
The GAMA survey aims to deliver 250,000 optical spectra (3--7Ang resolution)
over 250 sq. degrees to spectroscopic limits of r_{AB} <19.8 and K_{AB}<17.0
mag. Complementary imaging will be provided by GALEX, VST, UKIRT, VISTA,
HERSCHEL and ASKAP to comparable flux levels leading to a definitive
multi-wavelength galaxy database. The data will be used to study all aspects of
cosmic structures on 1kpc to 1Mpc scales spanning all environments and out to a
redshift limit of z ~ 0.4. Key science drivers include the measurement of: the
halo mass function via group velocity dispersions; the stellar, HI, and
baryonic mass functions; galaxy component mass-size relations; the recent
merger and star-formation rates by mass, types and environment. Detailed
modeling of the spectra, broad SEDs, and spatial distributions should provide
individual star formation histories, ages, bulge-disc decompositions and
stellar bulge, stellar disc, dust disc, neutral HI gas and total dynamical
masses for a significant subset of the sample (~100k) spanning both the giant
and dwarf galaxy populations. The survey commenced March 2008 with 50k spectra
obtained in 21 clear nights using the Anglo Australian Observatory's new
multi-fibre-fed bench-mounted dual-beam spectroscopic system (AAOmega).Comment: Invited talk at IAU 254 (The Galaxy Disk in Cosmological Context,
Copenhagen), 6 pages, 5 figures, high quality PDF version available at
http://www.eso.org/~jliske/gama
Populating Stellar Orbits Inside a Rotating, Gaseous Bar
In an effort to better understand the formation and evolution of barred
galaxies, we have examined the properties of equatorial orbits in the effective
potential of one model of a rapidly rotating, steady-state gas-dynamical bar
that has been constructed via a self-consistent hydrodynamical simulation.
Using a ``Restriction Hypothesis'' to determine initial conditions, we find
that a significant fraction of orbits in this potential are quasi-ergodic and
that regular orbits have a ``bowtie'' shape in contrast to the more typical x1
orbits. This bowtie orbit should give a boxy-peanut shape to such systems.Comment: Accepted for publication in The Astrophysical Journal; 29 pages, 29
gif figure
- …
