918 research outputs found

    Rotating filters permit wide range of optical pyrometry

    Get PDF
    Gear-driven dual filter disks of graduated density vary linearly with respect to rotation, allowing a wide range of photographic pyrometry. this technique is applicable in metallurgy, glass, plastics and refractory research, and crystallography

    qq-graded Heisenberg algebras and deformed supersymmetries

    Full text link
    The notion of qq-grading on the enveloping algebra generated by products of q-deformed Heisenberg algebras is introduced for qq complex number in the unit disc. Within this formulation, we consider the extension of the notion of supersymmetry in the enveloping algebra. We recover the ordinary Z2\mathbb{Z}_2 grading or Grassmann parity for associative superalgebra, and a modified version of the usual supersymmetry. As a specific problem, we focus on the interesting limit q1q\to -1 for which the Arik and Coon deformation of the Heisenberg algebra allows to map fermionic modes to bosonic ones in a modified sense. Different algebraic consequences are discussed.Comment: 2 figure

    q-Analogue of Shock Soliton Solution

    Get PDF
    By using Jackson's q-exponential function we introduce the generating function, the recursive formulas and the second order q-differential equation for the q-Hermite polynomials. This allows us to solve the q-heat equation in terms of q-Kampe de Feriet polynomials with arbitrary N moving zeroes, and to find operator solution for the Initial Value Problem for the q-heat equation. By the q-analog of the Cole-Hopf transformation we construct the q-Burgers type nonlinear heat equation with quadratic dispersion and the cubic nonlinearity. In q -> 1 limit it reduces to the standard Burgers equation. Exact solutions for the q-Burgers equation in the form of moving poles, singular and regular q-shock soliton solutions are found.Comment: 13 pages, 5 figure

    Normal Ordering for Deformed Boson Operators and Operator-valued Deformed Stirling Numbers

    Full text link
    The normal ordering formulae for powers of the boson number operator n^\hat{n} are extended to deformed bosons. It is found that for the `M-type' deformed bosons, which satisfy aaqaa=1a a^{\dagger} - q a^{\dagger} a = 1, the extension involves a set of deformed Stirling numbers which replace the Stirling numbers occurring in the conventional case. On the other hand, the deformed Stirling numbers which have to be introduced in the case of the `P-type' deformed bosons, which satisfy aaqaa=qn^a a^{\dagger} - q a^{\dagger} a = q^{-\hat{n}}, are found to depend on the operator n^\hat{n}. This distinction between the two types of deformed bosons is in harmony with earlier observations made in the context of a study of the extended Campbell-Baker-Hausdorff formula.Comment: 14 pages, Latex fil

    (p,q)-Deformations and (p,q)-Vector Coherent States of the Jaynes-Cummings Model in the Rotating Wave Approximation

    Get PDF
    Classes of (p,q)-deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q)-arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translates into (p,q)-deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.Comment: 1+25 pages, no figure

    Uniqueness of the mass in the radiating regime

    Get PDF
    The usual approaches to the definition of energy give an ambiguous result for the energy of fields in the radiating regime. We show that for a massless scalar field in Minkowski space-time the definition may be rendered unambiguous by adding the requirement that the energy cannot increase in retarded time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth ``piece'' of conformal null infinity Scri.Comment: 8 pages, revte

    Deformed quantum mechanics and q-Hermitian operators

    Full text link
    Starting on the basis of the non-commutative q-differential calculus, we introduce a generalized q-deformed Schr\"odinger equation. It can be viewed as the quantum stochastic counterpart of a generalized classical kinetic equation, which reproduces at the equilibrium the well-known q-deformed exponential stationary distribution. In this framework, q-deformed adjoint of an operator and q-hermitian operator properties occur in a natural way in order to satisfy the basic quantum mechanics assumptions.Comment: 10 page

    Lattice Green Function (at 0) for the 4d Hypercubic Lattice

    Full text link
    The generating function for recurrent Polya walks on the four dimensional hypercubic lattice is expressed as a Kampe-de-Feriet function. Various properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1

    Boost-rotation symmetric type D radiative metrics in Bondi coordinates

    Get PDF
    The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coordinates which are well adapted for the description of the radiative properties of spacetimes (Bondi coordinates). By calculating the total charge, Bondi and NUT mass and the Newman-Penrose constants of the spacetimes we provide a physical interpretation of the free parameters of the solutions. Additional relevant aspects on the asymptotics and radiative properties of the spacetimes considered, such as the possible polarization states of the gravitational and electromagnetic field, are discussed through the way

    Completeness of Coherent States Associated with Self-Similar Potentials and Ramanujan's Integral Extension of the Beta Function

    Full text link
    A decomposition of identity is given as a complex integral over the coherent states associated with a class of shape-invariant self-similar potentials. There is a remarkable connection between these coherent states and Ramanujan's integral extension of the beta function.Comment: 9 pages of Late
    corecore