1,618 research outputs found
Semiclassical states for quantum cosmology
In a metric variable based Hamiltonian quantization, we give a prescription
for constructing semiclassical matter-geometry states for homogeneous and
isotropic cosmological models. These "collective" states arise as infinite
linear combinations of fundamental excitations in an unconventional "polymer"
quantization. They satisfy a number of properties characteristic of
semiclassicality, such as peaking on classical phase space configurations. We
describe how these states can be used to determine quantum corrections to the
classical evolution equations, and to compute the initial state of the universe
by a backward time evolution.Comment: 13 page
Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory
Halvorson and Clifton have given a mathematical reconstruction of Bohr's
reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is
dictated by the two requirements of classicality and objectivity for the
description of experimental data, by proving consistency between their
objectivity requirement and a contextualized version of the EPR reality
criterion which had been introduced by Howard in his earlier analysis of Bohr's
reply. In the present paper, we generalize the above consistency theorem, with
a rather elementary proof, to a general formulation of EPR states applicable to
both non-relativistic quantum mechanics and algebraic quantum field theory; and
we clarify the elements of reality in EPR states in terms of Bohr's
requirements of classicality and objectivity, in a general formulation of
algebraic quantum theory.Comment: 13 pages, Late
Viral MicroRNA Effects on Pathogenesis of Polyomavirus SV40 Infections in Syrian Golden Hamsters
Shaojie Zhang, Vojtech Sroller, Preeti Zanwar, Steven J. Halvorson, Nadim J. Ajami, Corey W. Hecksel, Jody L. Swain, Connie Wong, Janet S. Butel, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of AmericaChun Jung Chen, Christopher S. Sullivan, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of AmericaJody L. Swain, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of AmericaEffects of polyomavirus SV40 microRNA on pathogenesis of viral infections in vivo are not known. Syrian golden hamsters are the small animal model for studies of SV40. We report here effects of SV40 microRNA and influence of the structure of the regulatory region on dynamics of SV40 DNA levels in vivo. Outbred young adult hamsters were inoculated by the intracardiac route with 1×107 plaque-forming units of four different variants of SV40. Infected animals were sacrificed from 3 to 270 days postinfection and viral DNA loads in different tissues determined by quantitative real-time polymerase chain reaction assays. All SV40 strains displayed frequent establishment of persistent infections and slow viral clearance. SV40 had a broad tissue tropism, with infected tissues including liver, kidney, spleen, lung, and brain. Liver and kidney contained higher viral DNA loads than other tissues; kidneys were the preferred site for long-term persistent infection although detectable virus was also retained in livers. Expression of SV40 microRNA was demonstrated in wild-type SV40-infected tissues. MicroRNA-negative mutant viruses consistently produced higher viral DNA loads than wild-type SV40 in both liver and kidney. Viruses with complex regulatory regions displayed modestly higher viral DNA loads in the kidney than those with simple regulatory regions. Early viral transcripts were detected at higher levels than late transcripts in liver and kidney. Infectious virus was detected infrequently. There was limited evidence of increased clearance of microRNA-deficient viruses. Wild-type and microRNA-negative mutants of SV40 showed similar rates of transformation of mouse cells in vitro and tumor induction in weanling hamsters in vivo. This report identified broad tissue tropism for SV40 in vivo in hamsters and provides the first evidence of expression and function of SV40 microRNA in vivo. Viral microRNA dampened viral DNA levels in tissues infected by SV40 strains with simple or complex regulatory regions.This work was supported in part by research grants R01 CA134524 (JSB) and R01 AI077746 (CSS) from the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Molecular BiosciencesEmail: [email protected]
The Scalar Field Kernel in Cosmological Spaces
We construct the quantum mechanical evolution operator in the Functional
Schrodinger picture - the kernel - for a scalar field in spatially homogeneous
FLRW spacetimes when the field is a) free and b) coupled to a spacetime
dependent source term. The essential element in the construction is the causal
propagator, linked to the commutator of two Heisenberg picture scalar fields.
We show that the kernels can be expressed solely in terms of the causal
propagator and derivatives of the causal propagator. Furthermore, we show that
our kernel reveals the standard light cone structure in FLRW spacetimes. We
finally apply the result to Minkowski spacetime, to de Sitter spacetime and
calculate the forward time evolution of the vacuum in a general FLRW spacetime.Comment: 13 pages, 1 figur
On the nature of continuous physical quantities in classical and quantum mechanics
Within the traditional Hilbert space formalism of quantum mechanics, it is
not possible to describe a particle as possessing, simultaneously, a sharp
position value and a sharp momentum value. Is it possible, though, to describe
a particle as possessing just a sharp position value (or just a sharp momentum
value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that
the answer to this question is No -- that the status of individual continuous
quantities is very different in quantum mechanics than in classical mechanics.
On the contrary, I shall show that the same subtle issues arise with respect to
continuous quantities in classical and quantum mechanics; and that it is, after
all, possible to describe a particle as possessing a sharp position value
without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe
Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems
It was recently shown that the nonseparable density operators for a bipartite
system are trace norm dense if either factor space has infinite dimension. We
show here that non-local states -- i.e., states whose correlations cannot be
reproduced by any local hidden variable model -- are also dense. Our
constructions distinguish between the cases where both factor spaces are
infinite-dimensional, where we show that states violating the CHSH inequality
are dense, and the case where only one factor space is infinite-dimensional,
where we identify open neighborhoods of nonseparable states that do not violate
the CHSH inequality but show that states with a subtler form of non-locality
(often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe
AQFT from n-functorial QFT
There are essentially two different approaches to the axiomatization of
quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and
functorial QFT, going back to Atiyah and Segal. More recently, based on ideas
by Baez and Dolan, the latter is being refined to "extended" functorial QFT by
Freed, Hopkins, Lurie and others. The first approach uses local nets of
operator algebras which assign to each patch an algebra "of observables", the
latter uses n-functors which assign to each patch a "propagator of states".
In this note we present an observation about how these two axiom systems are
naturally related: we demonstrate under mild assumptions that every
2-dimensional extended Minkowskian QFT 2-functor ("parallel surface transport")
naturally yields a local net. This is obtained by postcomposing the propagation
2-functor with an operation that mimics the passage from the Schroedinger
picture to the Heisenberg picture in quantum mechanics.
The argument has a straightforward generalization to general
pseudo-Riemannian structure and higher dimensions.Comment: 39 pages; further examples added: Hopf spin chains and asymptotic
inclusion of subfactors; references adde
Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems
We show in this article that the Reeh-Schlieder property holds for states of
quantum fields on real analytic spacetimes if they satisfy an analytic
microlocal spectrum condition. This result holds in the setting of general
quantum field theory, i.e. without assuming the quantum field to obey a
specific equation of motion. Moreover, quasifree states of the Klein-Gordon
field are further investigated in this work and the (analytic) microlocal
spectrum condition is shown to be equivalent to simpler conditions. We also
prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a
stationary real analytic spacetime fulfills the analytic microlocal spectrum
condition.Comment: 31 pages, latex2
Connes' embedding problem and Tsirelson's problem
We show that Tsirelson's problem concerning the set of quantum correlations
and Connes' embedding problem on finite approximations in von Neumann algebras
(known to be equivalent to Kirchberg's QWEP conjecture) are essentially
equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite
quantum correlations generated between tensor product separated systems is the
same as the set of correlations between commuting C*-algebras. Connes'
embedding problem asks whether any separable II factor is a subfactor of
the ultrapower of the hyperfinite II factor. We show that an affirmative
answer to Connes' question implies a positive answer to Tsirelson's.
Conversely, a positve answer to a matrix valued version of Tsirelson's problem
implies a positive one to Connes' problem
Remarks on Causality in Relativistic Quantum Field Theory
It is shown that the correlations predicted by relativistic quantum field
theory in locally normal states between projections in local von Neumann
algebras \cA(V_1),\cA(V_2) associated with spacelike separated spacetime
regions have a (Reichenbachian) common cause located in the union of
the backward light cones of and . Further comments on causality and
independence in quantum field theory are made.Comment: 10 pages, Latex, Quantum Structures 2002 Conference Proceedings
submission. Minor revision of the order of definitions on p.
- …
