283 research outputs found

    One-electron oxidation and reduction of glycosaminoglycan chloramides: a kinetic study.

    Get PDF
    Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. In this study, the fast reaction techniques of pulse radiolysis and nanosecond laser flash photolysis have been used to generate both oxidizing and reducing radicals to react with the chloramides of hyaluronan (HACl) and heparin (HepCl). The strong reducing formate radicals and hydrated electrons were found to react rapidly with both HACl and HepCl with rate constants of 1-1.7 x 108 and 0.7-1.2 x 108 M-1 s-1 for formate radicals and 2.2 x 109 and 7.2 x 10 8 M-1 s-1 for hydrated electrons, respectively. The spectral characteristics of the products of these reactions were identical and were consistent with initial attack at the N-Cl groups, followed by elimination of chloride ions to produce nitrogen-centered radicals, which rearrange subsequently and rapidly to produce C-2 radicals on the glucosamine moiety, supporting an earlier EPR study by M.D. Rees et al. (J. Am. Chem. Soc. 125: 13719-13733; 2003). The oxidizing hydroxyl radicals also reacted rapidly with HACl and HepCl with rate constants of 2.2 x 108 and 1.6 x 108 M-1 s-1, with no evidence from these data for any degree of selective attack on the N-Cl group relative to the N-H groups and other sites of attack. The carbonate anion radicals were much slower with HACl and HepCl than hydroxyl radicals (1.0 x 105 and 8.0 x 10 4 M-1 s-1, respectively) but significantly faster than with the parent molecules (3.5 x 104 and 5.0 x 10 4 M-1 s-1, respectively). These findings suggest that these potential in vivo radicals may react in a site-specific manner with the N-Cl group in the glycosaminoglycan chloramides of the ECM, possibly to produce more efficient fragmentation. This is the first study therefore to conclusively demonstrate that reducing radicals react rapidly with glycosaminoglycan chloramides in a site-specific attack at the N-Cl group, probably to produce a 100% efficient biopolymer fragmentation process. Although less reactive, carbonate radicals, which may be produced in vivo via reactions of peroxynitrite with serum levels of carbon dioxide, also appear to react in a highly site-specific manner at the N-Cl group. It is not yet known if such site-specific attacks by this important in vivo species lead to a more efficient fragmentation of the biopolymers than would be expected for attack by the stronger oxidizing species, the hydroxyl radical. It is clear, however, that the N-Cl group formed under inflammatory conditions in the extracellular matrix does present a more likely target for both reactive oxygen species and reducing species than the N-H groups in the parent glycosaminoglycans. © 2013 Elsevier Inc. All rights reserved

    Les enseignants: à la recherche de leur profession

    Get PDF
    Les Enseignants: à la recherche de leur profession reprend les idées centrales présentées à la Conférence donnée, sur l'invitation de l'ATEE, au Séminaire de Barcelone, en 1993. Cet article est la reproduction du texte de support à la Conférence. Étant donné l'espace disponible, il n'a pas été possible de le travailler dans le sens d'une plus grande problématisation et élaboration théorique

    Ultrasensitive hydrogen detection by electrostatically formed silicon nanowire decorated by palladium nanoparticles

    Get PDF
    Developing high performance hydrogen (H_{2}) sensors is of utmost importance to facilitate the safe usage of H_{2} as the alternative source of clean and renewable energy. We present an ultra-sensitive H_{2} sensor operating in air and based on electrostatically formed nanowire (EFN) sensor decorated by palladium nanoparticles (Pd NPs). By appropriate tuning of the various gate voltages of the EFN, an extremely high sensor response of ∼2 × 10^{6} % (0.8 % H_{2} exposure) and a sensitivity of ∼400 % ppm^{−1} is obtained at room temperature (20 ± 2 °C). This sensor outperforms, to the best of our knowledge, most of the reported resistive and field effect transistor (FET) based H^{2} sensors. The EFN power consumption varies from few pW to ∼436 nW at maximum current operation thus enabling ultra-low power usage at room temperature. In addition, the sensor exhibits fast response and recovery times, retains good sensing performances even at 50 % relative humidity (RH) and exhibits reproducibility over time. Combining Pd NPs with the unique features of the EFN platform makes Pd-EFN a versatile, robust, low power, rapid, and highly sensitive H_{2} sensor

    Adaptation of Chagas Disease Screening Recommendations for a Community of At-risk HIV in the United States

    Get PDF
    Chagas disease (CD), caused by Trypanosoma cruzi, is underdiagnosed in the United States. Improved screening strategies are needed, particularly for people at risk for life-threatening sequelae of CD, including people with human immunodeficiency virus (HIV, PWH). Here we report results of a CD screening strategy applied at a large HIV clinic serving an at-risk population

    Risk stratification of early admission to the intensive care unit of patients with no major criteria of severe community-acquired pneumonia: development of an international prediction rule

    Get PDF
    Introduction: To identify risk factors for early (< three days) intensive care unit (ICU) admission of patients hospitalised with community-acquired pneumonia (CAP) and not requiring immediate ICU admission, and to stratify the risk of ICU admission on days 1 to 3. Methods: Using the original data from four North American and European prospective multicentre cohort studies of patients with CAP, we derived and validated a prediction rule for ICU admission on days 1 to 3 of emergency department (ED) presentation, for patients presenting with no obvious reason for immediate ICU admission (not requiring immediate respiratory or circulatory support). Results: A total of 6560 patients were included (4593 and 1967 in the derivation and validation cohort, respectively), 303 (4.6%) of whom were admitted to an ICU on days 1 to 3. The Risk of Early Admission to ICU index (REA-ICU index) comprised 11 criteria independently associated with ICU admission: male gender, age younger than 80 years, comorbid conditions, respiratory rate of 30 breaths/minute or higher, heart rate of 125 beats/minute or higher, multilobar infiltrate or pleural effusion, white blood cell count less than 3 or 20 G/L or above, hypoxaemia (oxygen saturation < 90% or arterial partial pressure of oxygen (PaO2) < 60 mmHg), blood urea nitrogen of 11 mmol/L or higher, pH less than 7.35 and sodium less than 130 mEq/L. The REA-ICU index stratified patients into four risk classes with a risk of ICU admission on days 1 to 3 ranging from 0.7 to 31%. The area under the curve was 0.81 (95% confidence interval (CI) = 0.78 to 0.83) in the overall population. Conclusions: The REA-ICU index accurately stratifies the risk of ICU admission on days 1 to 3 for patients presenting to the ED with CAP and no obvious indication for immediate ICU admission and therefore may assist orientation decisions

    Compilation of a social network lexicon for determining the profile of authors

    Get PDF
    The use of social networks is steadily increasing worldwide. Hundreds of users daily register in the different existing platforms, therefore, the content extracted from the social networks is fundamental for tasks such as sentiment analysis, detection of author profiles, identification of authors, opinions mining, plagiarism detection, calculation of similarity between texts and to develop robust systems that help to make decisions in related areas such as politics, education, economy, among others. This paper provides a lexical aid for the pre-processing of texts posted in social networks evolved for the subsequent languages: English, Spanish, Dutch and Italian

    The nature of the memory trace and its neurocomputational implications

    Get PDF
    The brain processes underlying cognitive tasks must be very robust. Disruptions such as the destruction of large numbers of neurons, or the impact of alcohol and lack of sleep do not have negative effects except when they occur in an extreme form. This robustness implies that the parameters determining the functioning of networks of individual neurons must have large ranges or there must exist stabilizing mechanisms that keep the functioning of a network within narrow bounds. The simulation of a minimal neuronal architecture necessary to study cognitive tasks is described, which consists of a loop of three cell-assemblies. A crucial factor in this architecture is the critical threshold of a cell-assembly. When activated at a level above the critical threshold, the activation in a cell-assembly is subject to autonomous growth, which leads to an oscillation in the loop. When activated below the critical threshold, excitation gradually extinguishes. In order to circumvent the large parameter space of spiking neurons, a rate-dependent model of neuronal firing was chosen. The resulting parameter space of 12 parameters was explored by means of a genetic algorithm. The ranges of the parameters for which the architecture produced the required oscillations and extinctions, turned out to be relatively narrow. These ranges remained narrow when a stabilizing mechanism, controlling the total amount of activation, was introduced. The architecture thus shows chaotic behaviour. Given the overall stability of the operation of the brain, it can be concluded that there must exist other mechanisms that make the network robust. Three candidate mechanisms are discussed: synaptic scaling, synaptic homeostasis, and the synchronization of neural spikes

    Respiratory Syncytial Virus Matrix Protein Induces Lung Epithelial Cell Cycle Arrest through a p53 Dependent Pathway

    Get PDF
    Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication

    Aβ Mediated Diminution of MTT Reduction—An Artefact of Single Cell Culture?

    Get PDF
    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies
    corecore