5,570 research outputs found

    Direct evidence for the magnetic ordering of Nd ions in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering

    Full text link
    We have investigated the low energy nuclear spin excitations in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2_2Si2_2 and NdMn2_2Ge2_2. Our results are consistent with those of magnetization and recent neutron diffraction measurements

    Efficient HTTP based I/O on very large datasets for high performance computing with the libdavix library

    Full text link
    Remote data access for data analysis in high performance computing is commonly done with specialized data access protocols and storage systems. These protocols are highly optimized for high throughput on very large datasets, multi-streams, high availability, low latency and efficient parallel I/O. The purpose of this paper is to describe how we have adapted a generic protocol, the Hyper Text Transport Protocol (HTTP) to make it a competitive alternative for high performance I/O and data analysis applications in a global computing grid: the Worldwide LHC Computing Grid. In this work, we first analyze the design differences between the HTTP protocol and the most common high performance I/O protocols, pointing out the main performance weaknesses of HTTP. Then, we describe in detail how we solved these issues. Our solutions have been implemented in a toolkit called davix, available through several recent Linux distributions. Finally, we describe the results of our benchmarks where we compare the performance of davix against a HPC specific protocol for a data analysis use case.Comment: Presented at: Very large Data Bases (VLDB) 2014, Hangzho

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Slave to the rhythm: seasonal signals in otolith microchemistry reveal age of eastern Baltic cod (Gadus morhua)

    Get PDF
    Annual growth zones in cod otoliths from the eastern Baltic stock are less discrete than in other cod stocks leading to biased age reading, which recently led to a failure of age-based assessment in the eastern Baltic cod stock. In this study, we explored the applicability of minor and trace element patterns in cod otoliths for age determination. By first identifying elements of interest in a stock without ageing problems, western Baltic cod, we then tested their applicability on another stock without ageing problems, North Sea cod, and finally applied this knowledge to estimate age of eastern Baltic cod. In western Baltic cod, matching patterns with respect to occurrence of minima and maxima in both otolith opacity and element concentrations were found for Cu, Zn, and Rb, and inverse patterns with Mg and Mn. No match was found for Pb, Ba, and Sr. In the test stock, the North Sea cod, the same patterns in Cu, Zn, Rb, Mg, and Mn signals occurred. All eastern Baltic cod with low visual contrast between growth zones exhibited clearly defined synchronous cycles in Cu, Zn, Rb and Pb. Using a combined finite differencing method and structural break models approach, the statistical significance of the local profile minima were identified, based on which their age could be estimated. Despite extensive environmental differences between the three areas examined, the element concentrations of Cu, Zn, and Rb were strongly correlated in all individuals with similar correlations in all three areas, suggesting that the incorporation mechanisms are the same for these elements and independent of environmental concentrations

    Ion detection in the photoionization of a Rb Bose-Einstein condensate

    Full text link
    Two-photon ionization of Rubidium atoms in a magneto-optical trap and a Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns laser pulses, we detect single ions photoionized from the condenstate with a 35(10)% efficiency. The measurements are performed using a quartz cell with external electrodes, allowing large optical access for BECs and optical lattices.Comment: 14 pages, 7 figure

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    A Fuzzy Social Network Analysis Method and a Case Study on Tianya

    Full text link
    Social networking service (SNS) has become online service platforms that focus on facilitating the building of social networks among people who share interests, activities, backgrounds, or real-life connections and has had a rapid development in China in the past few years. This paper aims to develop a fuzzy social network service analysis method, which combines graph theory with related fuzzy approach, to analyze the social network structural features and the distribution characteristics of interpersonal nodes in SNS community. A case study on a very famous Chinese tourism BBS-Tianya-is conducted to illustrate and validate the proposed approach. The research findings are as follows: (1) The attraction degrees of various areas in the forum are significantly different; (2) interpersonal nodes in the forum are concentrated relatively; (3) the fuzzy out-degrees and the fuzzy in-degrees of interpersonal nodes in the forum conflict each other; and (4) the distribution of interpersonal nodes is influenced by geographical relations. These findings can directly support social network service management and particularly tourism online service developments. © Springer-Verlag Berlin Heidelberg 2014

    Production of a Fermi gas of atoms in an optical lattice

    Full text link
    We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we observe a change of the density of states of the system, which is a signature of quasi two dimensional confinement. We also find that the dipolar oscillations of the Fermi gas along the tight lattice are almost completely suppressed.Comment: 4 pages, 4 figures, revised versio

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure
    corecore