7,994 research outputs found
Two phase choke flow in tubes with very large L/D
Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low
Similarity and curvature effects in pool film boiling
Similarity and curvature effects in pool film boilin
GASPLOT - A computer graphics program that draws a variety of thermophysical property charts
A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine
Superconducting gyroscope research
Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture
Continuum Variability of Deeply Embedded Protostars as a Probe of Envelope Structure
Stars may be assembled in large growth spurts, however the evidence for this
hypothesis is circumstantial. Directly studying the accretion at the earliest
phases of stellar growth is challenging because young stars are deeply embedded
in optically thick envelopes, which have spectral energy distributions that
peak in the far-IR, where observations are difficult. In this paper, we
consider the feasibility of detecting accretion outbursts from these younger
stars by investigating the timescales for how the protostellar envelope
responds to changes in the emission properties of the central source. The
envelope heats up in response to an outburst, brightening at all wavelengths
and with the emission peak moving to shorter wavelengths. The timescale for
this change depends on the time for dust grains to heat and re-emit photons and
the time required for the energy to escape the inner, optically-thick portion
of the envelope. We find that the dust response time is much shorter than the
photon propagation time and thus the timescale over which the emission varies
is set by time delays imposed by geometry. These times are hours to days near
the peak of the spectral energy distribution and weeks to months in the sub-mm.
The ideal location to quickly detect continuum variability is therefore in the
mid- to far-IR, near the peak of the spectral energy distribution, where the
change in emission amplitude is largest. Searching for variability in sub-mm
continuum emission is also feasible, though with a longer time separation and a
weaker relationship between the amount of detected emission amplitude and
change in central source luminosity. Such observations would constrain
accretion histories of protostars and would help to trace the disk/envelope
instabilities that lead to stellar growth.Comment: 25 pages, 6 figures, accepted for publication in the Astrophysical
Journa
High-temperature Adhesive Development and Evaluation
High-temperature adhesive systems are evaluated for short and long-term stability at temperatures ranging from 232C to 427C. The resins selected for characterization include: NASA Langley developed polyphenylquinoxaline (PPQ), and commercially available polyimides (PI). The primary method of bond testing is single lap shear. The PPQ candidates are evaluated on 6A1-4V titanium adherends with chromic acid anodize and phosphate fluoride etch surface preparations. The remaining adhesives are evaluated on 15-5 PH stainless steel with a sulfuric acid anodize surface preparation. Preliminary data indicate that the PPQ adhesives tested have stability to 3000 hours at 450F with chromic acid anodize surface preparation. Additional studies are continuing to attempt to improve the PPQ's high-performance by formulating adhesive films with a boron filler and utilizing the phosphate fluoride surface preparation on titanium. Evaluation of the polyimide candidates on stainless-steel adherends indicates that the FM-35 (American Cyanamid), PMR-15 (U.S. Polymeric/Ferro), TRW partially fluorinated polyimide and NR 150B2S6X (DuPont) adhesives show sufficient promise to justify additional testing
Heat transfer in aerospace propulsion
Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored
On the Equivalence of Cellular Automata and the Tile Assembly Model
In this paper, we explore relationships between two models of systems which
are governed by only the local interactions of large collections of simple
components: cellular automata (CA) and the abstract Tile Assembly Model (aTAM).
While sharing several similarities, the models have fundamental differences,
most notably the dynamic nature of CA (in which every cell location is allowed
to change state an infinite number of times) versus the static nature of the
aTAM (in which tiles are static components that can never change or be removed
once they attach to a growing assembly). We work with 2-dimensional systems in
both models, and for our results we first define what it means for CA systems
to simulate aTAM systems, and then for aTAM systems to simulate CA systems. We
use notions of simulate which are similar to those used in the study of
intrinsic universality since they are in some sense strict, but also
intuitively natural notions of simulation. We then demonstrate a particular
nondeterministic CA which can be configured so that it can simulate any
arbitrary aTAM system, and finally an aTAM tile set which can be configured so
that it can be used to simulate any arbitrary nondeterministic CA system which
begins with a finite initial configuration.Comment: In Proceedings MCU 2013, arXiv:1309.104
- …
