7,994 research outputs found

    Two phase choke flow in tubes with very large L/D

    Get PDF
    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low

    Similarity and curvature effects in pool film boiling

    Get PDF
    Similarity and curvature effects in pool film boilin

    GASPLOT - A computer graphics program that draws a variety of thermophysical property charts

    Get PDF
    A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine

    Superconducting gyroscope research

    Get PDF
    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture

    Continuum Variability of Deeply Embedded Protostars as a Probe of Envelope Structure

    Full text link
    Stars may be assembled in large growth spurts, however the evidence for this hypothesis is circumstantial. Directly studying the accretion at the earliest phases of stellar growth is challenging because young stars are deeply embedded in optically thick envelopes, which have spectral energy distributions that peak in the far-IR, where observations are difficult. In this paper, we consider the feasibility of detecting accretion outbursts from these younger stars by investigating the timescales for how the protostellar envelope responds to changes in the emission properties of the central source. The envelope heats up in response to an outburst, brightening at all wavelengths and with the emission peak moving to shorter wavelengths. The timescale for this change depends on the time for dust grains to heat and re-emit photons and the time required for the energy to escape the inner, optically-thick portion of the envelope. We find that the dust response time is much shorter than the photon propagation time and thus the timescale over which the emission varies is set by time delays imposed by geometry. These times are hours to days near the peak of the spectral energy distribution and weeks to months in the sub-mm. The ideal location to quickly detect continuum variability is therefore in the mid- to far-IR, near the peak of the spectral energy distribution, where the change in emission amplitude is largest. Searching for variability in sub-mm continuum emission is also feasible, though with a longer time separation and a weaker relationship between the amount of detected emission amplitude and change in central source luminosity. Such observations would constrain accretion histories of protostars and would help to trace the disk/envelope instabilities that lead to stellar growth.Comment: 25 pages, 6 figures, accepted for publication in the Astrophysical Journa

    High-temperature Adhesive Development and Evaluation

    Get PDF
    High-temperature adhesive systems are evaluated for short and long-term stability at temperatures ranging from 232C to 427C. The resins selected for characterization include: NASA Langley developed polyphenylquinoxaline (PPQ), and commercially available polyimides (PI). The primary method of bond testing is single lap shear. The PPQ candidates are evaluated on 6A1-4V titanium adherends with chromic acid anodize and phosphate fluoride etch surface preparations. The remaining adhesives are evaluated on 15-5 PH stainless steel with a sulfuric acid anodize surface preparation. Preliminary data indicate that the PPQ adhesives tested have stability to 3000 hours at 450F with chromic acid anodize surface preparation. Additional studies are continuing to attempt to improve the PPQ's high-performance by formulating adhesive films with a boron filler and utilizing the phosphate fluoride surface preparation on titanium. Evaluation of the polyimide candidates on stainless-steel adherends indicates that the FM-35 (American Cyanamid), PMR-15 (U.S. Polymeric/Ferro), TRW partially fluorinated polyimide and NR 150B2S6X (DuPont) adhesives show sufficient promise to justify additional testing

    Heat transfer in aerospace propulsion

    Get PDF
    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored

    On the Equivalence of Cellular Automata and the Tile Assembly Model

    Full text link
    In this paper, we explore relationships between two models of systems which are governed by only the local interactions of large collections of simple components: cellular automata (CA) and the abstract Tile Assembly Model (aTAM). While sharing several similarities, the models have fundamental differences, most notably the dynamic nature of CA (in which every cell location is allowed to change state an infinite number of times) versus the static nature of the aTAM (in which tiles are static components that can never change or be removed once they attach to a growing assembly). We work with 2-dimensional systems in both models, and for our results we first define what it means for CA systems to simulate aTAM systems, and then for aTAM systems to simulate CA systems. We use notions of simulate which are similar to those used in the study of intrinsic universality since they are in some sense strict, but also intuitively natural notions of simulation. We then demonstrate a particular nondeterministic CA which can be configured so that it can simulate any arbitrary aTAM system, and finally an aTAM tile set which can be configured so that it can be used to simulate any arbitrary nondeterministic CA system which begins with a finite initial configuration.Comment: In Proceedings MCU 2013, arXiv:1309.104
    corecore