1,035 research outputs found
The 2D Distribution of Iron Rich Ejecta in the Remnant of SN 1885 in M31
We present Hubble Space Telescope (HST) ultraviolet Fe I and Fe II images of
the remnant of Supernova 1885 (S And) which is observed in absorption against
the bulge of the Andromeda galaxy, M31. We compare these Fe I and Fe II
absorption line images to previous HST absorption images of S And, of which the
highest quality and theoretically cleanest is Ca II H & K. Because the remnant
is still in free expansion, these images provide a 2D look at the distribution
of iron synthesized in this probable Type Ia explosion, thus providing insights
and constraints for theoretical SN Ia models. The Fe I images show extended
absorption offset to the east from the remnant's center as defined by Ca II
images and is likely an ionization effect due to self-shielding. More
significant is the remnant's apparent Fe II distribution which consists of four
streams or plumes of Fe-rich material seen in absorption that extend from
remnant center out to about 10,000 km/s. This is in contrast to the remnant's
Ca II absorption, which is concentrated in a clumpy, roughly spherical shell at
1000 to 5000 km/s but which extends out to 12,500 km/s. The observed
distributions of Ca and Fe rich ejecta in the SN 1885 remnant are consistent
with delayed detonation white dwarf models. The largely spherical symmetry of
the Ca-rich layer argues against a highly anisotropic explosion as might result
from a violent merger of two white dwarfs.Comment: 14 pages, 8 figures, and 1 table; revised to match ApJ published
versio
A spectropolarimetric view on the nature of the peculiar Type I SN 2005hk
We report two spectropolarimetric observations of SN 2005hk, which is a close
copy of the "very peculiar" SN 2002cx, showing low peak luminosity, slow
decline, high ionization near peak and an unusually low expansion velocity of
only about 7,000 km s^-1. Further to the data presented by Chornock et al.,
(2006), at -4 days before maximum, we present data of this object taken on 9
November 2005 (near maximum) and 23 November (+ two weeks) that show the
continuum and most of the spectral lines to be polarized at levels of about
0.2-0.3%. At both epochs the data corresponds to the Spectropolarimetric Type
D1. The general low level of line polarization suggests that the line forming
regions for most species observed in the spectrum have a similar shape to that
of the photosphere, which deviates from a spherical symmetry by <10%. In
comparison with spectropolarimetry of Type Ia and Core-collapse SNe at similar
epochs, we find that the properties of SN 2005hk are most similar to those of
Type Ia SNe. In particular, we find the low levels of continuum and line
polarization to indicate that the explosion mechanism is approximately
spherical, with homogeneous ejecta (unlike the chemically segregated ejecta of
CCSNe). We discuss the possibility that SN 2005hk was the result of the pure
deflagration of a white dwarf and note the issues concerning this
interpretation.Comment: ApJ accepted, uses emulateapj, 16 pages, 10 figures, figures 3 and 4
update
- …
