751 research outputs found
An in situ instrument for planar O2 optode measurements at benthic interfaces
A new in situ instrument for two‐dimensional mapping of oxygen in coastal sediments is presented. The measuring principle is described, and potential mechanical disturbances, solute and particle smearing associated with the measurements, and calibration routines are evaluated. The first in situ measurements obtained in two different benthic communities are presented. In a shallow photosynthetic sediment (1 m of water depth), an extensive horizontal and temporal variation in the O2 distribution caused by benthic photosynthesis and irrigating fauna was resolved. Repetitive planar optode measurements performed along a transect in central Øresund, Denmark (17 m of water depth) revealed a positive correlation between the apparent O2 penetration depths (OP) measured with a lateral distance <5.0 mm, whereas OP measured with a larger horizontal distance (up to 50 m) were not correlated. Consequently, the OP varied in patches with a characteristic size of 5.0 mm. The instrument described is a powerful new tool for in situ characterization of spatiotemporal variations in O2 distributions within benthic communities. The instrument can be adapted for use at full ocean depths, e.g., on deep‐sea landers or remote operating vehicles
Brief Note: An Ohio Record for Tuber Texense Heimsch
Author Institution: Department of Biological Science, Kent State Universit
Uniformity in the Wiener-Wintner theorem for nilsequences
We prove a uniform extension of the Wiener-Wintner theorem for nilsequences
due to Host and Kra and a nilsequence extension of the topological
Wiener-Wintner theorem due to Assani. Our argument is based on (vertical)
Fourier analysis and a Sobolev embedding theorem.Comment: v3: 18 p., proof that the cube construction produces compact
homogeneous spaces added, measurability issues in the proof of Theorem 1.5
addressed. We thank the anonymous referees for pointing out these gaps in v
Directional detection as a strategy to discover Galactic Dark Matter
Directional detection of Galactic Dark Matter is a promising search strategy
for discriminating genuine WIMP events from background ones. Technical progress
on gaseous detectors and read-outs has permitted the design and construction of
competitive experiments. However, to take full advantage of this powerful
detection method, one need to be able to extract information from an observed
recoil map to identify a WIMP signal. We present a comprehensive formalism,
using a map-based likelihood method allowing to recover the main incoming
direction of the signal and its significance, thus proving its galactic origin.
This is a blind analysis intended to be used on any directional data.
Constraints are deduced in the () plane and systematic
studies are presented in order to show that, using this analysis tool,
unambiguous dark matter detection can be achieved on a large range of exposures
and background levels.Comment: 20 pages, 5 figures Final version to appear in Phys. Lett.
What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy
Numerous ongoing experiments aim at detecting WIMP dark matter particles from
the galactic halo directly through WIMP-nucleon interactions. Once such a
detection is established a confirmation of the galactic origin of the signal is
needed. This requires a direction-sensitive detector. We show that such a
detector can measure the velocity anisotropy beta of the galactic halo.
Cosmological N-body simulations predict the dark matter anisotropy to be
nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a
nonzero beta would be strong proof of the fundamental difference between dark
and baryonic matter. We estimate the sensitivity for various detector
configurations using Monte Carlo methods and we show that the strongest signal
is found in the relatively few high recoil energy events. Measuring beta to the
precision of ~0.03 will require detecting more than 10^4 WIMP events with
nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a
32S target. This number corresponds to ~10^6 events at all energies. We discuss
variations with respect to input parameters and we show that our method is
robust to the presence of backgrounds and discuss the possible improved
sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio
Charge amplification concepts for direction-sensitive dark matter detectors
Direction measurement of weakly interacting massive particles in
time-projection chambers can provide definite evidence of their existence and
help to determine their properties. This article demonstrates several concepts
for charge amplification in time-projection chambers that can be used in
direction-sensitive dark matter search experiments. We demonstrate
reconstruction of the 'head-tail' effect for nuclear recoils above 100keV, and
discuss the detector performance in the context of dark matter detection and
scaling to large detector volumes.Comment: 15 pages, 9 figure
A Census of Star-Forming Galaxies in the z~9-10 Universe based on HST+Spitzer Observations Over 19 CLASH clusters: Three Candidate z~9-10 Galaxies and Improved Constraints on the Star Formation Rate Density at z~9
We utilise a two-color Lyman-Break selection criterion to search for z~9-10
galaxies over the first 19 clusters in the CLASH program. A systematic search
yields three z~9-10 candidates. While we have already reported the most robust
of these candidates, MACS1149-JD, two additional z~9 candidates are also found
and have H_{160}-band magnitudes of ~26.2-26.9. A careful assessment of various
sources of contamination suggests <~1 contaminants for our z~9-10 selection. To
determine the implications of these search results for the LF and SFR density
at z~9, we introduce a new differential approach to deriving these quantities
in lensing fields. Our procedure is to derive the evolution by comparing the
number of z~9-10 galaxy candidates found in CLASH with the number of galaxies
in a slightly lower redshift sample (after correcting for the differences in
selection volumes), here taken to be z~8. This procedure takes advantage of the
fact that the relative volumes available for the z~8 and z~9-10 selections
behind lensing clusters are not greatly dependent on the details of the lensing
models. We find that the normalization of the UV LF at z~9 is just
0.28_{-0.20}^{+0.39}\times that at z~8, ~1.4_{-0.8}^{+3.0}x lower than
extrapolating z~4-8 LF results. While consistent with the evolution in the UV
LF seen at z~4-8, these results marginally favor a more rapid evolution at z>8.
Compared to similar evolutionary findings from the HUDF, our result is less
insensitive to large-scale structure uncertainties, given our many independent
sightlines on the high-redshift universe.Comment: 22 pages, 11 figures, 5 tables, accepted for publication in the
Astrophysical Journal, updated to include the much deeper Spitzer/IRAC
observations over our three z~9-10 candidate
CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431
We present a quintuply lensed z ~ 6 candidate discovered in the field of the
galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing
and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier
Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the
quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of
the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter.
We perform a detailed photometric analysis to verify its high-z and lensed
nature. We get as photometric redshift z_phot ~ 5.9, and given the extended
nature and NIR colours of the lensed images, we rule out low-z early type and
galactic star contaminants. We perform a strong lensing analysis of the
cluster, using 13 families of multiple lensed images identified in the HST
images. Our final best model predicts the high-z quintuply lensed system with a
position accuracy of 0.8''. The magnifications of the five images are between
2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at
z=6. We also estimate the UV slope from the observed NIR colours, finding a
steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs
to fit the photometry of the hiz candidate, and we conclude that it is a young
(age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity
(Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013,
accepted on 23 Nov 201
CLASH: A Census of Magnified Star-Forming Galaxies at z ~ 6-8
We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing
clusters obtained as part of the Cluster Lensing And Supernova survey with
Hubble (CLASH) Multi-Cycle Treasury program to search for galaxies.
We report the discovery of 204, 45, and 13 Lyman-break galaxy candidates at
, , and , respectively, identified from purely
photometric redshift selections. This large sample, representing nearly an
order of magnitude increase in the number of magnified star-forming galaxies at
presented to date, is unique in that we have observations in four
WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters,
which enable very accurate photometric redshift selections. We construct
detailed lensing models for 17 of the 18 clusters to estimate object
magnifications and to identify two new multiply lensed
candidates. The median magnifications over the 17 clusters are 4, 4, and 5 for
the , , and samples, respectively, over an average
area of 4.5 arcmin per cluster. We compare our observed number counts with
expectations based on convolving "blank" field UV luminosity functions through
our cluster lens models and find rough agreement down to mag, where we
begin to suffer significant incompleteness. In all three redshift bins, we find
a higher number density at brighter observed magnitudes than the field
predictions, empirically demonstrating for the first time the enhanced
efficiency of lensing clusters over field surveys. Our number counts also are
in general agreement with the lensed expectations from the cluster models,
especially at , where we have the best statistics.Comment: Accepted for publication in the Astrophysical Journal, 25 pages, 13
figures, 7 table
A Parameter Space Exploration of Galaxy Cluster Mergers I: Gas Mixing and the Generation of Cluster Entropy
We present a high-resolution set of adiabatic binary galaxy cluster merger
simulations using FLASH. These are the highest-resolution simulations to date
of such mergers using an AMR grid-based code with Eulerian hydrodynamics. In
this first paper in a series we investigate the effects of merging on the
entropy of the hot intracluster gas, specifically with regard to the ability of
merging to heat and disrupt cluster "cool-cores." We find, in line with recent
works, that the effect of fluid instabilities that are well-resolved in
grid-based codes is to significantly mix the gases of the two clusters and to
significantly increase the entropy of the gas of the final merger remnant. This
result is characteristic of mergers over a range of initial mass ratio and
impact parameter. In line with this, we find that the kinetic energy associated
with random motions is higher in our merger remnants which have high entropy
floors, indicating the motions have efficiently mixed the gas and heated the
cluster core with gas of initially high entropy. We examine the implications of
this result for the maintenance of high entropy floors in the centers of galaxy
clusters and the derivation of the properties of dark matter from the thermal
properties of the X-ray emitting gas.Comment: 25 pages, 23 figures, Accepted to Ap
- …
