1,972 research outputs found

    Carbon Brainprint Case Study: optimising defouling schedules for oil- refinerypreheat trains

    Get PDF
    In an oil refinery, crude oil is heated to 360-370°C before entering a distillation columnoperating at atmospheric pressure where the gas fraction and several liquid fractions withdifferent boiling points (e.g. gasoline, kerosene, diesel, gas oil, heavy gas oil) are separated off.The crude oil is heated in two stages. The preheat train - a series of heat exchangers - heats itfrom ambient temperature to about 270°C when it enters the furnace, known as the coil inlettemperature. The furnace then heats the oil to the temperature required for distillation.The purpose of the preheat train is to recover heat from the liquid products extracted in thedistillation column. Without this, 2-3% of the crude oil throughput would be used for heating thefurnace; with the preheat train up to 70% of the required heat is recovered. It also serves tocool the refined products: further cooling normally uses air or water. Over time, fouling reduces the performance of the heat exchangers, increasing the amount ofenergy that has to be supplied. It is possible to bypass units to allow them to be cleaned, withan associated cost and temporary loss of performance. The cleaning schedule thus has animpact on the overall efficiency, cost of operation and emissions. The group at the Department of Chemical Engineering and Biotechnology at Cambridgedeveloped a scheduling algorithm for this non-linear optimisation problem. It yields a good,though not-necessarily optimal, schedule and can handle additional constraints, such as thepresence of desalters with specific temperature requirements within the preheat train. This isnow being developed into a commercial software product. Data from two refineries - one operated by Repsol YPF in Argentina and the Esso FawleyRefinery in the UK - were used to model the systems and test the algorithm. For the Repsol YPF refinery, when compared with current practice and including a constrainton the desalter inlet temperature, the most conservative estimate of the emissions reductionwas 773 t CO2/year. This assumed a furnace efficiency of 90%. The emissions reductionincreased to 927 t CO2/year at 75% efficiency and 1730 t CO2/year at 40%. These were basedon a stoichiometric estimate of the emissions from the furnace. Using a standard emissionfactor increased them by 7.4%. For Esso Fawley, the estimated emission reduction compared to no maintenance was1435 t CO2/year at 90% furnace efficiency. This increased to 1725 t CO2/year at 75% and3225 t CO2/year at 40% efficien

    Change of Electronic Structure Induced by Magnetic Transitions in CeBi

    Full text link
    The temperature dependence of the electronic structure of CeBi arising from two types of antiferromagnetic transitions based on optical conductivity (σ(ω)\sigma(\omega)) was observed. The σ(ω)\sigma(\omega) spectrum continuously and discontinuously changes at 25 and 11 K, respectively. Between these temperatures, two peaks in the spectrum rapidly shift to the opposite energy sides as the temperature changes. Through a comparison with the band calculation as well as with the theoretical σ(ω)\sigma(\omega) spectrum, this peak shift was explained by the energy shift of the Bi 6p6p band due to the mixing effect between the Ce 4fΓ84f \Gamma_8 and Bi 6p6p states. The single-layer antiferromagnetic (++-) transition from the paramagnetic state was concluded to be of the second order. The marked changes in the σ(ω)\sigma(\omega) spectrum at 11 K, however, indicated the change in the electronic structure was due to a first-order-like magnetic transition from a single-layer to a double-layer (++++--) antiferromagnetic phase.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004

    Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory

    Full text link
    The band calculation scheme for ff electron compounds is developed on the basis of the dynamical mean field theory (DMFT) and the LMTO method. The auxiliary impurity problem is solved by a method named as NCAf2f^{2}v', which includes the correct exchange process of the f1f2f^{1} \to f^{2} virtual excitation as the vertex correction to the non-crossing approximation (NCA) for the f1f0f^{1} \to f^{0} fluctuation. This method leads to the correct magnitude of the Kondo temperature, TKT_{\rm K}, and makes it possible to carry out quantitative DMFT calculation including the crystalline field (CF) and the spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra are also calculated to estimate TKT_{\rm K}. It is applied to Ce metal and CeSb at T=300 K as the first step. In Ce metal, the hybridization intensity (HI) just below the Fermi energy is reduced in the DMFT band. The photo-emission spectra (PES) have a conspicuous SO side peak, similar to that of experiments. TKT_{\rm K} is estimated to be about 70 K in γ\gamma-Ce, while to be about 1700 K in α\alpha-Ce. In CeSb, the double-peak-like structure of PES is reproduced. In addition, TKT_{\rm K} which is not so low is obtained because HI is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed

    The phase diagram of Yang-Mills theory with a compact extra dimension

    Get PDF
    We present a non-perturbative study of the phase diagram of SU(2) Yang-Mills theory in a five-dimensional spacetime with a compact extra dimension. The non-renormalizable theory is regularized on an anisotropic lattice and investigated through numerical simulations in a regime characterized by a hierarchy between the scale of low-energy physics, the inverse compactification radius, and the cutoff scale. We map out the structure of the phase diagram and the pattern of lines corresponding to fixed values of the ratio between the mass of the fifth component of the gauge field and the non-perturbative mass gap of the four-dimensional modes. We discuss different limits of the model, and comment on the implications of our findings.Comment: 17 pages, 9 figure

    Internal properties and environments of dark matter halos

    Full text link
    We use seven high-resolution NN-body simulations to study the correlations among different halo properties (assembly time, spin, shape and substructure), and how these halo properties are correlated with the large-scale environment in which halos reside. The large-scale tidal field estimated from halos above a mass threshold is used as our primary quantity to characterize the large-scale environment, while other parameters, such as the local overdensity and the morphology of large-scale structure, are used for comparison. For halos at a fixed mass, all the halo properties depend significantly on environment, particularly the tidal field. The environmental dependence of halo assembly time is primarily driven by local tidal field. The mass of the unbound fraction in substructure is boosted in strong tidal force region, while the bound fraction is suppressed. Halos have a tendency to spin faster in stronger tidal field and the trend is stronger for more massive halos. The spin vectors show significant alignment with the intermediate axis of the tidal field, as expected from the tidal torque theory. Both the major and minor axes of halos are strongly aligned with the corresponding principal axes of the tidal field. In general, a halo that can accrete more material after the formation of its main halo on average is younger, is more elongated, spins faster, and contains a larger amount of substructure. Higher density environments not only provide more material for halo to accrete, but also are places of stronger tidal field that tends to suppress halo accretion. The environmental dependencies are the results of these two competing effects. The tidal field based on halos can be estimated from observation, and we discuss the implications of our results for the environmental dependence of galaxy properties.Comment: Accepted for publication in MNRA

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy
    corecore