1,641 research outputs found
Majorana meets Coxeter: Non-Abelian Majorana Fermions and Non-Abelian Statistics
We discuss statistics of vortices having zero-energy non-Abelian Majorana
fermions inside them. Considering the system of multiple non-Abelian vortices,
we derive a non-Abelian statistics that differs from the previously derived
non-Abelian statistics. The new non-Abelian statistics presented here is given
by a tensor product of two different groups, namely the non-Abelian statistics
obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter
group is a symmetric group related to the symmetry of polytopes in a
high-dimensional space. As the simplest example, we consider the case in which
a vortex contains three Majorana fermions that are mixed with each other under
the SO(3) transformations. We concretely present the representation of the
Coxeter group in our case and its geometrical expressions in the
high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.Comment: 6 pages, 4 figures, references added, published versio
Dynamical Chiral Symmetry Breaking on the Light Front.II. The Nambu--Jona-Lasinio Model
An investigation of dynamical chiral symmetry breaking on the light front is
made in the Nambu--Jona-Lasinio model with one flavor and N colors. Analysis of
the model suffers from extraordinary complexity due to the existence of a
"fermionic constraint," i.e., a constraint equation for the bad spinor
component. However, to solve this constraint is of special importance. In
classical theory, we can exactly solve it and then explicitly check the
property of ``light-front chiral transformation.'' In quantum theory, we
introduce a bilocal formulation to solve the fermionic constraint by the 1/N
expansion. Systematic 1/N expansion of the fermion bilocal operator is realized
by the boson expansion method. The leading (bilocal) fermionic constraint
becomes a gap equation for a chiral condensate and thus if we choose a
nontrivial solution of the gap equation, we are in the broken phase. As a
result of the nonzero chiral condensate, we find unusual chiral transformation
of fields and nonvanishing of the light-front chiral charge. A leading order
eigenvalue equation for a single bosonic state is equivalent to a leading order
fermion-antifermion bound-state equation. We analytically solve it for scalar
and pseudoscalar mesons and obtain their light-cone wavefunctions and masses.
All of the results are entirely consistent with those of our previous analysis
on the chiral Yukawa model.Comment: 23 pages, REVTEX, the version to be published in Phys.Rev.D; Some
clarifications in discussion of the LC wavefunctions adde
An Analytical Expression for the Non-Singlet Structure Functions at Small in the Double Logarithmic Approximation
A simple analytic expression for the non-singlet structure function
is given. The expression is derived from the result of Ref. [1] obtained by low
resummation of the quark ladder diagrams in the double logarithmic
approximation of perturbative QCD.Comment: 5 pages, A few comments and refs are adde
Forward particle productions at RHIC and the LHC from CGC within local rcBK evolution
In order to describe forward hadron productions in high-energy nuclear
collisions, we propose a Monte-Carlo implementation of
Dumitru-Hayashigaki-Jalilian-Marian formula with the unintegrated gluon
distribution obtained numerically from the running-coupling BK equation. We
discuss influence of initial conditions for the BK equation by comparing a
model constrained by global fit of small-x HERA data and a newly proposed one
from the running coupling MV model.Comment: Talk given at conference Quark Matter 2011, 4 page
An analytic study towards instabilities of the glasma
Strong longitudinal color flux fields will be created in the initial stage of
high-energy nuclear collisions. We investigate analytically time evolution of
such boost-invariant color fields from Abelian-like initial conditions, and
next examine stability of the boost-invariant configurations against rapidity
dependent fluctuations. We find that the magnetic background field has an
instability induced by the lowest Landau level whose amplitude grows
exponentially. For the electric background field there is no apparent
instability although pair creations due to the Schwinger mechanism should be
involved.Comment: 4p, 3figs; poster contribution to QM200
Finite Size Scaling of the 2D Six-Clock model
We investigate the isotropic-anisotropic phase transition of the
two-dimensional XY model with six-fold anisotropy, using Monte Carlo
renormalization group method. The result indicates difficulty of observing
asymptotic critical behavior in Monte Carlo simulations, owing to the marginal
flow at the fixed point.Comment: Short note. revtex, 6 pages, 3 figures. To appear in J. Phys. Soc.
Jpn. Vol.70 No. 2 (Feb 2001
Statistical Physics and Light-Front Quantization
Light-front quantization has important advantages for describing relativistic
statistical systems, particularly systems for which boost invariance is
essential, such as the fireball created in a heavy ion collisions. In this
paper we develop light-front field theory at finite temperature and density
with special attention to quantum chromodynamics. We construct the most general
form of the statistical operator allowed by the Poincare algebra and show that
there are no zero-mode related problems when describing phase transitions. We
then demonstrate a direct connection between densities in light-front thermal
field theory and the parton distributions measured in hard scattering
experiments. Our approach thus generalizes the concept of a parton distribution
to finite temperature. In light-front quantization, the gauge-invariant Green's
functions of a quark in a medium can be defined in terms of just 2-component
spinors and have a much simpler spinor structure than the equal-time fermion
propagator. From the Green's function, we introduce the new concept of a
light-front density matrix, whose matrix elements are related to forward and to
off-diagonal parton distributions. Furthermore, we explain how thermodynamic
quantities can be calculated in discretized light-cone quantization, which is
applicable at high chemical potential and is not plagued by the
fermion-doubling problem.Comment: 30 pages, 3 figures; v2: Refs. added, minor changes, accepted for
publication in PR
Chemical Equilibration and Transport Properties of Hadronic Matter near
We discuss how the inclusion of Hagedorn states near leads to short
chemical equilibration times of proton anti-proton pairs, pairs, and
pairs, which indicates that hadrons do not need to be
"born" into chemical equilibrium in ultrarelativistic heavy ion collisions. We
show that the hadron ratios computed within our model match the experimental
results at RHIC very well. Furthermore, estimates for near
computed within our resonance gas model are comparable to the string theory
viscosity bound . Our model provides a good description of the
recent lattice results for the trace anomaly close to MeV.Comment: 4 pages, 3 figures, to appear in the conference proceedings for Quark
Matter 2009, March 30 - April 4, Knoxville, Tennesse
Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion.
MYO1C, a single-headed class I myosin, associates with cholesterol-enriched lipid rafts and facilitates their recycling from intracellular compartments to the cell surface. Absence of functional MYO1C disturbs the cellular distribution of lipid rafts, causes the accumulation of cholesterol-enriched membranes in the perinuclear recycling compartment, and leads to enlargement of endolysosomal membranes. Several feeder pathways, including classical endocytosis but also the autophagy pathway, maintain the health of the cell by selective degradation of cargo through fusion with the lysosome. Here we show that loss of functional MYO1C leads to an increase in total cellular cholesterol and its disrupted subcellular distribution. We observe an accumulation of autophagic structures caused by a block in fusion with the lysosome and a defect in autophagic cargo degradation. Interestingly, the loss of MYO1C has no effect on degradation of endocytic cargo such as EGFR, illustrating that although the endolysosomal compartment is enlarged in size, it is functional, contains active hydrolases, and the correct pH. Our results highlight the importance of correct lipid composition in autophagosomes and lysosomes to enable them to fuse. Ablating MYO1C function causes abnormal cholesterol distribution, which has a major selective impact on the autophagy pathway.This work was financially supported by the Wellcome Trust
(F.B., D.A.T. and H.B.), the Deutsche Forschungsgemeinschaft
Grant MA 1081/19–1 (D.J.M) and the Medical Research Council
(F.B and C. K.-I.). The CIMR is in receipt of a strategic award
from the Wellcome Trust (100140).This is the final published version. It first appeared at http://www.tandfonline.com/doi/abs/10.4161/15548627.2014.984272#.VNo0Gy6Qne4
Monte Carlo Renormalization Group Analysis of Lattice Model in
We present a simple, sophisticated method to capture renormalization group
flow in Monte Carlo simulation, which provides important information of
critical phenomena. We applied the method to lattice model and
obtained renormalization flow diagram which well reproduces theoretically
predicted behavior of continuum model. We also show that the method
can be easily applied to much more complicated models, such as frustrated spin
models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably
reduced redundancy of presentation. v3:final version to appear in Phys.Rev.
- …
