3,091 research outputs found

    Experimental study of surface pressures induced on a flat plate and a body of revolution by various dual jet configurations

    Get PDF
    The effect of the angle of a jet to a crossflow, the performance of dual jet configurations, and a jet injected from a body of revolution as opposed to a flat plate were investigated during experiments conducted in the 7x10 tunnel at NASA Ames at Velocities from 14.5 m/sec to 35.8 m/sec (47.6 to 117.4 ft/sec.). Pressure distributions are presented for single and dual jets over a range of velocity ratios from 2 to 10, spacings from 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees. For the body of revolution tests, the ratio of the jet to body diameters was set as large (1/2) in order to be more representative of V/STOL aircraft applications. Flat plate tests involved dual jets both aligned and in side by side configurations. The effects of the various parameters and the differences between the axisymmetric and planar body geometrics on the nature, size, shape, and strength of the interaction regions on the body surfaces are shown. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets

    Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Get PDF
    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets

    Asymptotics of the solutions of the stochastic lattice wave equation

    Full text link
    We consider the long time limit theorems for the solutions of a discrete wave equation with a weak stochastic forcing. The multiplicative noise conserves the energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds both for square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sense in the former case, and in the weak sense in the latter. On the other hand, the weak limit for square integrable initial data is deterministic

    Design definition study of a NASA/Navy lift/cruise fan technology V/STOL airplane: Risk assessment addendum to the final report

    Get PDF
    An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Strike point splitting induced by the application of magnetic perturbations on MAST

    Full text link
    Divertor strike point splitting induced by resonant magnetic perturbations (RMPs) has been observed on MAST for a variety of RMP configurations in a plasma scenario with Ip=750kA where those configurations all have similar resonant components. Complementary measurements have been obtained with divertor Langmuir probes and an infrared camera. Clear splitting consistently appears in this scenario only in the even configuration of the perturbation coils, similarly to the density pump-out. These results present a challenge for models of plasma response to RMPs.Comment: 9 pages, 4 figures, submitted to the proceedings of the 20th Conference on Plasma Surface Interactions, to be published in the Journal of Nuclear Material

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    Exact soliton solutions, shape changing collisions and partially coherent solitons in coupled nonlinear Schroedinger equations

    Full text link
    We present the exact bright one-soliton and two-soliton solutions of the integrable three coupled nonlinear Schroedinger equations (3-CNLS) by using the Hirota method, and then obtain them for the general NN-coupled nonlinear Schroedinger equations (N-CNLS). It is pointed out that the underlying solitons undergo inelastic (shape changing) collisions due to intensity redistribution among the modes. We also analyse the various possibilities and conditions for such collisions to occur. Further, we report the significant fact that the various partial coherent solitons (PCS) discussed in the literature are special cases of the higher order bright soliton solutions of the N-CNLS equations.Comment: 4 pages, RevTex, 1 EPS figure To appear in Physical Review Letter
    corecore