3,880 research outputs found
The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant
PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio
Cumulate causes for the low contents of sulfide-loving elements in the continental crust
Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs
High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered
regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The
regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little
information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution
time-course profile of gene expression during development of a single leaf over a 3-week period to senescence.
A complex experimental design approach and a combination of methods were used to extract high-quality replicated data
and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to
reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well
as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups
of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic
processes, signaling pathways, and specific TF activity, which will underpin the development of network models to
elucidate the process of senescence
Acyl-chain elongation drives ketosynthase substrate selectivity in trans-acyltransferase polyketide synthases
Type I modular polyketide synthases (PKSs), responsible for the biosynthesis of many biologically active agents, possess a ketosynthase (KS) domain within each module to catalyze chain elongation.
Acylation of the KS active site Cys residue is followed by transfer to malonyl-acyl carrier protein, yielding an extended β-ketoacyl chain. To date, the precise contribution of KS selectivity in controlling product fidelity has been unclear. We submitted six KS domains from the trans-acyl transferase PKSs to a mass spectrometry-basedelongation assay, and identified higher substrat selectivity in the elongating step than in preceding acylation. A close correspondence between observed KS selectivity and that predicted by phylogenetic analysis was seen. Our findings provide insights into the mechanism of KS selectivity in this important group of PKSs, can serve as guidance for engineering, and show that targeted mutagenesis can be used to expand the repertoire of acceptable substrates
Accelerator system for the PRISM based muon to electron conversion experiment
The next generation of lepton flavor violation experiments need high
intensity and high quality muon beams. Production of such beams requires
sending a short, high intensity proton pulse to the pion production target,
capturing pions and collecting the resulting muons in the large acceptance
transport system. The substantial increase of beam quality can be obtained by
applying the RF phase rotation on the muon beam in the dedicated FFAG ring,
which was proposed for the PRISM project.This allows to reduce the momentum
spread of the beam and to purify from the unwanted components like pions or
secondary protons. A PRISM Task Force is addressing the accelerator and
detector issues that need to be solved in order to realize the PRISM
experiment. The parameters of the required proton beam, the principles of the
PRISM experiment and the baseline FFAG design are introduced. The spectrum of
alternative designs for the PRISM FFAG ring are shown. Progress on ring main
systems like injection and RF are presented. The current status of the study
and its future directions are discussed.Comment: Studies performed within the PRISM Task Force initiativ
Чергове засідання Ради Міжнародної асоціації академій наук
7 червня 2012 року в Національному дослідницькому центрі «Курчатовський інститут» відбулося чергове засідання Ради Міжнародної асоціації академій наук (МААН). Під час урочистої церемонії закриття засідання президенту МААН, президенту НАН України академіку НАН України і РАН Борису Євгеновичу Патону було присвоєно звання Почесного доктора НДЦ «Курчатовський інститут»
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on
neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and
Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding
limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m <
(1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron
emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2
10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino
coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}.
Two-neutrino 2b-decay half-lives have been measured with a high accuracy,
T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2}
Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.
Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores
- …
