177 research outputs found
Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.
INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks.
CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients
Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.
INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks.
CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients
Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.
Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date
Pediatric multiple sclerosis: update on diagnostic criteria, imaging, histopathology and treatment choices
Pediatric multiple sclerosis (MS) represents less than 5% of the MS population, but patients with pediatric-onset disease reach permanent disability at a younger age than adult onset patients. Accurate diagnosis at presentation and optimal long-term treatment is vital to mitigate ongoing neuroinflammation and irreversible neurodegeneration.
However, it may be difficult to early differentiate pediatric MS from acute disseminated
encephalomyelitis (ADEM) and neuromyelitis optica spectrum disorders (NMOSD) as they often have atypical presentation that differs from that of adult-onset MS. The
purpose of this review is to summarize the updated views on diagnostic criteria, imaging, histopathology and treatment choices
The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica
Background: Acute brainstem syndrome (ABS) may herald multiple sclerosis (MS), neuromyelitis optica (NMO), or occur as an isolated syndrome. The aquaporin 4 (AQP4)-specific serum autoantibody, NMO-IgG, is a biomarker for NMO. However, the role of anti-AQP4 antibody in the conversion of ABS to NMO is unclear.
Methods: Thirty-one patients with first-event ABS were divided into two groups according to the presence of anti-AQP4 antibodies, their clinical features and outcomes were retrospectively analyzed.
Results: Fourteen of 31 patients (45.16 %) were seropositive for NMO-IgG. The 71.43 % of anti-AQP4 (+) ABS patients converted to NMO, while only 11.76 % of anti-AQP4 (-) ABS patients progressed to NMO. Anti-AQP4 (+) ABS patients demonstrated a higher IgG index (0.68 ± 0.43 vs 0.42 ± 0.13, p < 0.01) and Kurtzke Expanded Disability Status Scale (4.64 ± 0.93 vs 2.56 ± 0.81, p < 0.01) than anti-AQP4 (-) ABS patients. Area postrema clinical brainstem symptoms occurred more frequently in anti-AQP4 (+) ABS patients than those in anti-AQP4 (-) ABS patients (71.43 % vs 17.65 %, p = 0.004). In examination of magnetic resonance imaging (MRI), the 78.57 % of anti-AQP4 (+) ABS patients had medulla-predominant involvements in the sagittal view and dorsal-predominant involvements in the axial view.
Conclusions: ABS represents an inaugural or limited form of NMO in a high proportion of anti-AQP4 (+) patients
Über eine Klasse polynomialer Scharen selbstadjungierter Operatoren im Hilbertraum
HEK293A cells expressing either mouse MOG (mMOG) or rat MOG (rMOG) C terminally tagged with EGFP. (DOCX 2792Â kb
Autoantibody to MOG suggests two distinct clinical subtypes of NMOSD
We characterized a unique group of patients with neuromyelitis optica spectrum disorder (NMOSD) who carried autoantibodies of aquaporin-4 (AQP4) and myelin-oligodendrocyte glycoprotein (MOG). Among the 125 NMOSD patients, 10 (8.0%) were AQP4- and MOG-ab double positive, and 14 (11.2%) were MOG-ab single positive. The double-positive patients had a multiphase disease course with a high annual relapse rate (P=0.0431), and severe residual disability (P<0.0001). Of the double-positive patients, 70% had MS-like brain lesions, more severe edematous, multifocal regions on spinal magnetic resonance imaging (MRI), pronounced decreases of retinal nerve fiber layer thickness and atrophy of optic nerves. In contrast, patients with only MOG-ab had a higher ratio of monophasic disease course and mild residual disability. Spinal cord MRI illustrated multifocal cord lesions with mild edema, and brain MRIs showed more lesions around lateral ventricles. NMOSD patients carrying both autoantibodies to AQP4 and MOG existed and exhibited combined features of prototypic NMO and relapsing-remitting form of MS, whereas NMOSD with antibodies to MOG only exhibited an “intermediate” phenotype between NMOSD and MS. Our study suggests that antibodies against MOG might be pathogenic in NMOSD patients and that determination of anti-MOG antibodies maybe instructive for management of NMOSD patients
Seronegative Neuromyelitis Optica Spectrum - The challenges on disease definition and pathogenesis
Neuromyelitis optica spectrum disorders (NMOSD) are characterized by severe optic neuritis and/or longitudinally extensive transverse myelitis, and some brain lesions are also unique to NMOSD. Serum autoantibodies against aquaporin-4 (AQP4) are detected in most cases of NMOSD. However, some patients with NMOSD remain seronegative despite repetitive testing during attacks with highly sensitive cell-based assays. The differential diagnosis of NMOSD is not restricted to multiple sclerosis and it includes many diseases that can produce longitudinally extensive myelitis and/or optic neuritis. We review the clinical features, imaging, and laboratory findings that can be helpful on the diagnostic work-up, discuss the differences between AQP4 antibody positive and negative patients with NMOSD, including features of NMOSD with antibodies against myelin oligodendrocyte glycoprotein
Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype
- …
