1,783 research outputs found

    Symmetry breaking by quantum coherence in single electron attachment

    Get PDF
    Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, in order to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n=2) + H− is asymmetric about the inter-nuclear axis, while the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes and demonstrates the role of coherent effects in electron induced chemistry

    Quantum state magnification

    Full text link
    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. Remarkably, a recent proposal has shown that, in principle, such low-noise detection is not a necessary requirement. Here, we experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. Using an intermediate magnification step, we perform squeezed state metrology 8 dB below the standard quantum limit with a detection system that has a noise floor 10 dB above the standard quantum limit. Beyond its conceptual significance, this method eases implementation complexity and is expected to find application in next generation quantum sensors

    Dissociative Electron Attachment Cross Sections for H<sub>2</sub> and D<sub>2</sub>

    Get PDF
    New measurements of the absolute cross sections for dissociative electron attachment (DEA) in molecular hydrogen and deuterium are presented which resolve previous ambiguities and provide a test bed for theory. The experimental methodology is based upon a momentum imaging time-of-flight spectrometer that allowed us to eliminate any contributions due to electronically excited metastable neutrals and ultraviolet light while ensuring detection of all the ions. The isotope effect in the DEA process in the two molecules is found to be considerably larger than previously observed. More importantly, it is found to manifest in the polar dissociation process (also known as ion pair production) as well

    Dissociation dynamics of transient anion formed via electron attachment to sulfur dioxide

    Get PDF
    We report the molecular dynamics of dissociative electron attachment to sulfur dioxide (SO2) by measuring the momentum distribution of fragment anions using the velocity slice imaging technique in the electron energy range of 2–10 eV. The S- channel results from symmetric dissociation which exhibits competition between the stretch mode and bending mode of vibration in the excited parent anion. The asymmetric dissociation of parent anions leads to the production of O- and SO- channels where the corresponding neutral fragments are formed in their ground as well as excited electronic states. We also identify that internal excitation of SO- is responsible for its low yield at higher electron energies

    X-ray photoemission study of NiS_{2-x}Se_x (x = 0.0 - 1.2)

    Full text link
    Electronic structure of NiS_{2-x}Se_x system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core level as well as the valence band spectra of NiS_2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the band width W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.Comment: 19 pages, 6 figures, To appear in Phys. Rev. B, 200

    How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems

    Get PDF
    For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system

    Structural evolution drives diversification of the large LRR-RLK gene family

    Get PDF
    Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) are signal receptors critical in development and defense. LRR‐RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well‐resolved LRR‐RLK gene tree has remained elusive. To resolve the LRR‐RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR‐RLK subclades and reconstructed the deepest nodes of the full gene family. We discovered that the LRR‐RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR‐RLK variants as members of other gene families. Our work corrects this misclassification. Our results reveal ongoing structural evolution generating novel LRR‐RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family

    Euphausiids of the west coast of India

    Get PDF
    The euphausiids (Class Crustacea: Order Euphausiacea) one of the major components of the marine zooplankton occurring in the EEZ of the west coast of India (eastern Arabian Sea) and collected during the cruises of FORV Sugar Sampada during 1985-1992 period from the epipelagic zone were subjected to specieswise study for their distribution in space and time and for their ecology and biology. Seventeen species were encountered of which Pseudeuphasia latifrons (at an average density of 258/lOOOm^ of water), Euphausiia diomedeae (1,256), E. sibogae (1,437), Nematoscelis gracilis (309), Stylocheiron armatum (230) and S. qffine (216) were the most abundant and cosmopolitan in occurrence. The other 17 species namely Thysanopoda monacantha, T. tricuspidata, T. astylata, E. tenera, E. pseudogibba, Nematobrachion flexipes, S. suhmii, S. microphthalma, S. longicorne, S. abbreviatum and S. maximum were rather sparsely distributed and their average number per lOOOm^ of water ranged between 10 and 151 only. The major species exhibited marked variations in population during different months and seasons mainly depending on the changes in the environment

    Ring-like Oligomers of Synaptotagmins and Related C2 Domain Proteins

    Get PDF
    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca2+-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca2+ involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca2+ influx

    Attenuated total reflectance fourier transform infrared spectroscopy: an analytical technique to understand therapeutic responses at the molecular level

    Full text link
    Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics
    corecore