28,114 research outputs found
Early life growth patterns persist for 12 years and impact pulmonary outcomes in cystic fibrosis
BACKGROUND:
In children with cystic fibrosis (CF), recovery from growth faltering within 2 years of diagnosis (Responders) is associated with better growth and less lung disease at age 6 years. This study examined whether these benefits are sustained through 12 years of age.
METHODS:
Longitudinal growth from 76 children with CF enrolled in the Wisconsin CF Neonatal Screening Project was examined and categorized into 5 groups: R12, R6, and R2, representing Responders who maintained growth improvement to age 12, 6, and 2 years, respectively, and I6 and N6, representing Non-responders whose growth did and did not improve during ages 2-6 years, respectively. Lung disease was evaluated by % predicted forced expiratory volume in one second (FEV1) and chest radiograph (CXR) scores.
RESULTS:
Sixty-two percent were Responders. Within this group, 47% were R12, 28% were R6, and 25% were R2. Among Non-responders, 76% were N6. CF children with meconium ileus (MI) had worse lung function and CXR scores compared to other CF children. Among 53 children with pancreatic insufficiency without MI, R12 had significantly better FEV1 (97-99% predicted) and CXR scores during ages 6-12 years than N6 (89-93% predicted). Both R6 and R2 experienced a decline in FEV1 by ages 10-12 years.
CONCLUSIONS:
Early growth recovery in CF is critical, as malnutrition during infancy tends to persist and catch-up growth after age 2 years is difficult. The longer adequate growth was maintained after early growth recovery, the better the pulmonary outcomes at age 12 years
Interrelation between radio and X-ray signatures of drifting subpulses in pulsars
We examined a model of partially screened gap region above the polar cap, in
which the electron-positron plasma generated by sparking discharges coexists
with thermionic flow ejected by the bombardment of the surface beneath these
sparks. Our special interest was the polar cap heating rate and the subpulse
drifting rate, both phenomena presumably associated with sparks operating at
the polar cap. We investigated correlation between the intrinsic drift rate and
polar cap heating rate and found that they are coupled to each other in such a
way that the thermal X-ray luminosity from heated polar cap depends only
on the observational tertiary subpulse drift periodicity (polar cap
carousel time). Within our model of partially screened gap we derived the
simple formula relating and , and showed that it holds for
PSRs B094310 and B1133+16, which are the only two pulsars in which both
and are presently known.Comment: 4 page
Elastic metamaterials with simultaneously negative effective shear modulus and mass density
We propose a type of elastic metamaterial comprising fluid-solid composite
inclusions which can possess negative shear modulus and negative mass density
over a large frequency region. Such a solid metamaterial has a unique elastic
property that only transverse waves can propagate with a negative dispersion
while longitudinal waves are forbidden. This leads to many interesting
phenomena such as negative refraction, which is demonstrated by using a wedge
sample, and a significant amount of mode conversion from transverse waves to
longitudinal waves that cannot occur on the interface of two natural solids
Tidal Stabilization of Rigidly Rotating, Fully Relativistic Neutron Stars
It is shown analytically that an external tidal gravitational field increases
the secular stability of a fully general relativistic, rigidly rotating neutron
star that is near marginal stability, protecting it against gravitational
collapse. This stabilization is shown to result from the simple fact that the
energy required to raise a tide on such a star, divided by the
square of the tide's quadrupole moment , is a decreasing function of the
star's radius , (where, as changes, the
star's structure is changed in accord with the star's fundamental mode of
radial oscillation). If were positive, the tidal
coupling would destabilize the star. As an application, a rigidly rotating,
marginally secularly stable neutron star in an inspiraling binary system will
be protected against secular collapse, and against dynamical collapse, by tidal
interaction with its companion. The ``local-asymptotic-rest-frame'' tools used
in the analysis are somewhat unusual and may be powerful in other studies of
neutron stars and black holes interacting with an external environment. As a
byproduct of the analysis, in an appendix the influence of tidal interactions
on mass-energy conservation is elucidated.Comment: Revtex, 10 pages, 2 figures; accepted for publication in Physical
Review D. Revisions: Appendix rewritten to clarify how, in Newtonian
gravitation theory, ambiguity in localization of energy makes interaction
energy ambiguous but leaves work done on star by tidal gravity unambiguous.
New footnote 1 and Refs. [11] and [19
Complexion-mediated martensitic phase transformation in Titanium
The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface.European Commission. Framework Programme for Research and Innovation (FP7/2007–2013))/ERC Grant agreement 290998 'SmartMet’)Innovative Research Team in University (IRT13034)National Basic Research Program of China (973 Program) (2014CB644003)China. Ministry of Science and Technology. National Key Research and Development Program (2016YFB0701302)National Natural Science Foundation of China (51501145)National Natural Science Foundation of China (51320105014)National Natural Science Foundation of China (51621063
Exact Solution of a Electron System Combining Two Different t-J Models
A new strongly correlated electron model is presented. This is formed by two
types of sites: one where double occupancy is forbidden, as in the t-J model,
and the other where double occupancy is allowed but vacancy is not allowed, as
an inverse t-J model. The Hamiltonian shows nearest and next-to-nearest
neighbour interactions and it is solved by means of a modified algebraic nested
Bethe Ansatz. The number of sites where vacancy is not allowed, may be treated
as a new parameter if the model is looked at as a t-J model with impurities.
The ground and excited states are described in the thermodynamic limit.Comment: Some corrections and references added. To be published in J. Phys.
Nuclear Effects on Heavy Boson Production at RHIC and LHC
We predict W and Z transverse momentum distributions from proton-proton and
nuclear collisions at RHIC and LHC. A resummation formalism with power
corrections to the renormalization group equations is used. The dependence of
the resummed QCD results on the non-perturbative input is very weak for the
systems considered. Shadowing effects are discussed and found to be unimportant
at RHIC, but important for LHC. We study the enhancement of power corrections
due to multiple scattering in nuclear collisions and numerically illustrate the
weak effects of the dependence on the nuclear mass.Comment: 21 pages, 11 figure
- …
