1,105 research outputs found
On phase behavior and dynamical signatures of charged colloidal platelets
We investigate the competition between anisotropic excluded-volume and
repulsive electrostatic interactions in suspensions of thin charged colloidal
discs, by means of Monte-Carlo simulations and dynamical characterization of
the structures found. We show that the original intrinsic anisotropy of the
electrostatic potential between charged platelets, obtained within the
non-linear Poisson-Boltzmann formalism, not only rationalizes the generic
features of the complex phase diagram of charged colloidal platelets such as
Gibbsite and Beidellite clays, but also predicts the existence of novel
structures. In addition, we find evidences of a strong slowing down of the
dynamics upon increasing density.Comment: 6 pages, 6 Figure
Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes
The main result of this paper is a semi-analytic approximation for the chord
distribution functions of three-dimensional models of microstructure derived
from Gaussian random fields. In the simplest case the chord functions are
equivalent to a standard first-passage time problem, i.e., the probability
density governing the time taken by a Gaussian random process to first exceed a
threshold. We obtain an approximation based on the assumption that successive
chords are independent. The result is a generalization of the independent
interval approximation recently used to determine the exponent of persistence
time decay in coarsening. The approximation is easily extended to more general
models based on the intersection and union sets of models generated from the
iso-surfaces of random fields. The chord distribution functions play an
important role in the characterization of random composite and porous
materials. Our results are compared with experimental data obtained from a
three-dimensional image of a porous Fontainebleau sandstone and a
two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.
Aging dynamics in a colloidal glass of Laponite
The aging dynamics of colloidal suspensions of Laponite, a synthetic clay, is
investigated using dynamic light stattering (DLS) and viscometry after a quench
into the glassy phase. DLS allows to follow the diffusion of Laponite particles
and reveals that there are two modes of relaxation. The fast mode corresponds
to a rapid diffusion of particles within "cages" formed by the neighboring
particles. The slow mode corresponds to escape from the cages: its average
relaxation time increases exponentially fast with the age of the glass. In
addition, the slow mode has a broad distribution of relaxation times, its
distribution becoming larger as the system ages. Measuring the concomitant
increase of viscosity as the system ages, we can relate the slowing down of the
particle dynamics to the viscosity.Comment: 9 pages, 8 Postscript figures, submitted to Phys. Rev.
Kinetics of active surface-mediated diffusion in spherically symmetric domains
We present an exact calculation of the mean first-passage time to a target on
the surface of a 2D or 3D spherical domain, for a molecule alternating phases
of surface diffusion on the domain boundary and phases of bulk diffusion. We
generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a
biased diffusion in a general annulus with an arbitrary number of regularly
spaced targets on a partially reflecting surface. The presented approach is
based on an integral equation which can be solved analytically. Numerically
validated approximation schemes, which provide more tractable expressions of
the mean first-passage time are also proposed. In the framework of this minimal
model of surface-mediated reactions, we show analytically that the mean
reaction time can be minimized as a function of the desorption rate from the
surface.Comment: Published online in J. Stat. Phy
Nuclear forward scattering in particulate matter: dependence of lineshape on particle size distribution
In synchrotron Moessbauer spectroscopy, the nuclear exciton polariton
manifests itself in the lineshape of the spectra of nuclear forward scattering
(NFS) Fourier-transformed from time domain to frequency domain. This lineshape
is generally described by the convolution of two intensity factors. One of them
is Lorentzian related to free decay. We derived the expressions for the second
factor related to Frenkel exciton polariton effects at propagation of
synchrotron radiation in Moessbauer media. Parameters of this Frenkelian shape
depend on the spatial configuration of Moessbauer media. In a layer of uniform
thickness, this factor is found to be a simple hypergeometric function. Next,
we consider the particles spread over a 2D surface or diluted in non-Moessbauer
media to exclude an overlap of ray shadows by different particles. Deconvolving
the purely polaritonic component of linewidths is suggested as a simple
procedure sharpening the experimental NFS spectra in frequency domain. The
lineshapes in these sharpened spectra are theoretically expressed via the
parameters of the particle size distributions (PSD). Then, these parameters are
determined through least-squares fitting of the line shapes.Comment: 13 pages, 12 figure
Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects
Quasi two-dimensional random site percolation model objects were fabricate
based on computer generated templates. Samples consisting of two compartments,
a reservoir of HO gel attached to a percolation model object which was
initially filled with DO, were examined with NMR (nuclear magnetic
resonance) microscopy for rendering proton spin density maps. The propagating
proton/deuteron inter-diffusion profiles were recorded and evaluated with
respect to anomalous diffusion parameters. The deviation of the concentration
profiles from those expected for unobstructed diffusion directly reflects the
anomaly of the propagator for diffusion on a percolation cluster. The fractal
dimension of the random walk, , evaluated from the diffusion measurements
on the one hand and the fractal dimension, , deduced from the spin density
map of the percolation object on the other permits one to experimentally
compare dynamical and static exponents. Approximate calculations of the
propagator are given on the basis of the fractional diffusion equation.
Furthermore, the ordinary diffusion equation was solved numerically for the
corresponding initial and boundary conditions for comparison. The anomalous
diffusion constant was evaluated and is compared to the Brownian case. Some ad
hoc correction of the propagator is shown to pay tribute to the finiteness of
the system. In this way, anomalous solutions of the fractional diffusion
equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma
Towards deterministic equations for Levy walks: the fractional material derivative
Levy walks are random processes with an underlying spatiotemporal coupling.
This coupling penalizes long jumps, and therefore Levy walks give a proper
stochastic description for a particle's motion with broad jump length
distribution. We derive a generalized dynamical formulation for Levy walks in
which the fractional equivalent of the material derivative occurs. Our approach
will be useful for the dynamical formulation of Levy walks in an external force
field or in phase space for which the description in terms of the continuous
time random walk or its corresponding generalized master equation are less well
suited
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation
The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism.\ud
\u
- …
