3,155 research outputs found

    Crystal structure of \u3cem\u3ecis\u3c/em\u3e-2-(2-carboxycyclopropyl)-glycine (CCG-III) monohydrate

    Get PDF
    The title compound, C6H9NO4·H2O [systematic name: (αR,1R,2S)-rel-α-amino-2-carb­oxy­cyclo­propane­acetic acid monohydrate], crystallizes with two organic mol­ecules and two water mol­ecules in the asymmetric unit. The space group is P21 and the organic mol­ecules are enanti­omers, thus this is an example of a `false conglomerate\u27 with two mol­ecules of opposite handedness in the asymmetric unit (r.m.s. overlay fit = 0.056 Å for one mol­ecule and its inverted partner). Each mol­ecule exists as a zwitterion, with proton transfer from the amino acid carb­oxy­lic acid group to the amine group. In the crystal, the components are linked by N-H···O and O-H···O hydrogen bonds, generating (100) sheets. Conformationally restricted glutamate analogs are of inter­est due to their selective activation of different glutamate receptors, and the naturally occurring (+)-CCG-III is an inhibitor of glutamate uptake and the key geometrical parameters are discussed

    Molecular Actuator: Redox-Controlled Clam-Like Motion in a Bichromophoric Electron Donor

    Get PDF
    The one-electron oxidation of tetramethoxydibenzobicyclo[4.4.1]undecane (4) prompts it to undergo a clam-like electromechanical actuation into a cofacially π-stacked conformer as established by (i) electrochemical analysis, (ii) by the observation of the intense charge-resonance transition in the near IR region in its cation radical spectrum, and (iii) by X-ray crystallographic characterization of the isolated cation radical salt (4+• SbCl6−)

    Assembly, Structure, and Reactivity of Cu\u3csub\u3e4\u3c/sub\u3eS and Cu\u3csub\u3e3\u3c/sub\u3eS Models for the Nitrous Oxide Reductase Active Site, Cu\u3csub\u3eZ\u3c/sub\u3e*

    Get PDF
    Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the CuZ* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [CuI4(μ4-S)] cluster with N–H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N–H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [CuI3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the CuZ* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [CuI4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI4(μ4-S)] cluster reacted with N3–, a linear triatomic substrate isoelectronic to N2O, in preference to NO2–, a bent triatomic. This [CuI4(μ4-S)] cluster also bound I–, a known inhibitor of CuZ*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I– inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme

    A One-Hole Cu\u3csub\u3e4\u3c/sub\u3eS Cluster with N\u3csub\u3e2\u3c/sub\u3eO Reductase Activity: A Structural and Functional Model for Cu\u3csub\u3eZ\u3c/sub\u3e

    Get PDF
    During bacterial denitrification, two-electron reduction of N2O occurs at a [Cu4(μ4-S)] catalytic site (CuZ*) embedded within the nitrous oxide reductase (N2OR) enzyme. In this Communication, an amidinate-supported [Cu4(μ4-S)] model cluster in its one-hole (S = 1/2) redox state is thoroughly characterized. Along with its two-hole redox partner and fully reduced clusters reported previously, the new species completes the two-electron redox series of [Cu4(μ4-S)] model complexes with catalytically relevant oxidation states for the first time. More importantly, N2O is reduced by the one-hole cluster to produce N2 and the two-hole cluster, thereby completing a closed cycle for N2O reduction. Not only is the title complex thus the best structural model for CuZ* to date, but it also serves as a functional CuZ* mimic

    A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)

    Get PDF
    A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways

    Diels−Alder Topochemistry via Charge-Transfer Crystals:  Novel (Thermal) Single-Crystal-to-Single-Crystal Transformations

    Get PDF
    The solid-state [4+2] cycloaddition of anthracene to bis(N-ethylimino)-1,4-dithiin occurs via a unique single-phase topochemical reaction in the intermolecular (1:1) charge-transfer crystal. The thermal heteromolecular solid-state condensation involves the entire crystal, and this rare crystalline event follows topochemical control during the entire cycloaddition. As a result, a new crystalline modification of the Diels−Alder product is formed with a crystal-packing similar to that of the starting charge-transfer crystal but very different from that of the (thermodynamically favored) product modification obtained from solution-phase crystallization. Such a single-phase transformation is readily monitored by X-ray crystallography at various conversion stages, and the temporal changes in crystallographic parameters are correlated with temperature-dependent (solid-state) kinetic data that are obtained by 1H NMR spectroscopy at various reaction times. Thus, an acceleration of the solid-state reaction over time is found which results from a progressive lowering of the activation barrier for cycloaddition in a single crystal as it slowly and homogeneously converts from the reactant to the product lattice

    A Cu\u3csub\u3e4\u3c/sub\u3eS Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands

    Get PDF
    To model the (His)7Cu4Sn (n = 1 or 2) active sites of nitrous oxide reductase, the first Cu4(μ4-S) cluster supported only by nitrogen donors has been prepared using amidinate supporting ligands. Structural, magnetic, spectroscopic, and computational characterization is reported. Electrochemical data indicates that the 2-hole model complex can be reduced reversibly to the 1-hole state and irreversibly to the fully reduced state

    X-ray Structural Characterization of Charge Delocalization onto the Three Equivalent Benzenoid Rings in Hexamethoxytriptycene Cation Radical

    Get PDF
    Definitive X-ray crystallographic evidence is obtained for a single hole (or a polaron) to be uniformly distributed on the three equivalent 1,2-dimethoxybenzenoid (or veratrole) rings in the hexamethoxytriptycene cation radical. This conclusion is further supported by electrochemical analysis and by the observation of an intense near-IR transition in its electronic spectrum, as well as by comparison of the spectral and electrochemical characteristics with the model compounds containing one and two dimethoxybenzene rings

    Accessing Spin-Crossover Behaviour In Iron(II) Complexes Of N-Confused Scorpionate Ligands

    Get PDF
    The first examples of a class of N-confused tris(pyrazolyl)methane ‘scorpionate’ ligands have been prepared. The magnetic properties of their iron(II) tetrafluoroborate complexes are dictated by changing one substituent per ligand rather than three as is typical for normal scorpionate ligands

    Charge-Transfer Forces in the Self-Assembly of Heteromolecular Reactive Solids:  Successful Design of Unique (Single-Crystal-to-Single-Crystal) Diels−Alder Cycloadditions

    Get PDF
    Electron donor/acceptor (EDA) interactions are found to be a versatile methodology for the engineering of reactive heteromolecular crystals. In this way, a series of the charge-transfer π-complexes between bis(alkylimino)-1,4-dithiin acceptors and anthracene donors are shown to form heteromolecular (1:1) crystalline solids that spontaneously undergo stereoselective [2 + 4] Diels−Alder cycloadditions. The flexible nature of the 1,4-dithiin moiety allows this homogeneous topochemical transformation to proceed with minimal distortion of the crystal lattice. As a result, a unique (single) crystal phase of the Diels−Alder adduct can be produced anti-thermodynamically with a molecular arrangement very different from that in solvent-grown crystals. Such a topochemical reaction between bis(methylimino)-1,4-dithiin and anthracene proceeds thermally and homogeneously up to very high conversions without disintegration of the single crystal. This ideal case of the mono-phase topochemical conversion can be continuously monitored structurally (X-ray crystallography) and kinetically (NMR spectroscopy) throughout the entire range of the crystalline transformation. The resultant “artificial” crystal of the Diels−Alder adduct is surprisingly stable despite its different symmetry and packing mode compared to the naturally grown (thermodynamic) crystal
    corecore